DOI QR코드

DOI QR Code

Geomorphology and Geology of Mt. Deok on Bigeum Island, Shinan, Korea

신안 비금도 덕산의 지형 및 지질

  • Chung, Chull-Hwan (Faculty of Earth Systems and Environmental Sciences, Chonnam National University) ;
  • Kim, Cheong-Bin (Department of Physics Education, Sunchon National University)
  • 정철환 (전남대학교 지구환경과학부) ;
  • 김정빈 (순천대학교 물리교육과)
  • Received : 2017.09.29
  • Accepted : 2017.12.14
  • Published : 2017.12.31

Abstract

This study investigates the development process of Mt. Deok on Bigeum Island, Shinan, on the basis of geomorphological and geological analyses. K-Ar dating was carried out on two samples of the acidic lapilli tuff developed in the study area, and the obtained K-Ar ages are $70.4{\pm}1.4$ and $76.9{\pm}1.5Ma$, which correspond to the Late Cretaceous (Campanian). Mt. Deok is surrounded by rock cliff, and various weathering microtopographic features, such as tafoni, tor and gnamma, are developed. Tafoni with diverse morphologic types is the most dominant feature, indicative of intense salt weathering. Geological characteristics such as porous tuff and joint have played an important role in the development of tafoni and rock cliff. Geomorphology and geology of Mt. Deok reflect paleoenvironmental change and interaction between human and nature in the coastal area.

이 연구에서는 전라남도 신안군 비금도의 덕산에 대한 지형 및 지질학적 분석을 통하여 그 형성과정을 고찰하였다. 연구지역에 분포하는 산성 라필리응회암에 대한 K-Ar 연대측정을 실시하였고, 중생대 백악기 말(Campanian)에 해당하는 $70.4{\pm}1.4Ma$ 내지 $76.9{\pm}1.5Ma$의 연대를 얻었다. 덕산은 암반절벽으로 둘러싸여 있으며 타포니, 토르, 나마와 같은 풍화 미지형이 발달되어 있다. 특히 다양한 형태의 타포니가 발달되어 있어 활발한 염풍화의 영향을 지시하고 있다. 다공질의 응회암 및 절리의 발달과 같은 지질학적 특성이 타포니와 암반절벽 등의 지형 형성에 중요한 영향을 준 것으로 판단된다. 덕산의 지형 및 지질은 과거 환경변화와 해안지역에서의 인간과 자연의 상호작용을 보여주고 있다.

Keywords

References

  1. Bradley, W.C., Hutton, J.T., and Twidale, C.R., 1978, Role of Granitic tafonis, south Australia. Journal of Geology, 86, 647-654. https://doi.org/10.1086/649730
  2. Choi, B.Y., Choi, H.I., Hwang J.H., Kee, W.S., Koh, H.J., Kim Y.B., Lee, B.J., Song, G.Y., Kim, J.C., and Choi, Y.S., 2002, Explanatory Note of the Mokpo and Yeosu Sheets (1:250,000). Korea institute of geoscience and mineral resources, 45 p. (in Korean)
  3. French, H.M. and Guglielmin, M., 2000, Observations on Granite Weathering Phenomena, Mount Keinath, Northern Victoria Land. Antarctica Permafrost and periglacial processes, 13, 231-236.
  4. Huinink, H.P., Pel, L., and Kopinga, K., 2004, Simulating the growth of tafoni. Earth Surface Processes and Landforms, 29, 1225-1233. https://doi.org/10.1002/esp.1087
  5. Jin, J.H. and Chough, S.K., 1998, Partitioning of transgressive deposits in the SE Yellow Sea: a sequence stratigraphic interpretation. Marine Geology, 149, 79-92. https://doi.org/10.1016/S0025-3227(98)00023-1
  6. Kim, I.J. and Nagao, K., 1992, K-Ar ages of the hydrothermal clay deposits and the sourrounding igneous rocks in southwest Korea. Journal of Petrology Society of Korea, 1, 58-70.
  7. Kim, C.B. and Kang, S.S., 2012, K-Ar Ages of Cretaceous Fossil Sites, Seoyuri, Hwasun, Southern Korea. Journal of Korean Earth Science, 33, 618-626. (in Korean) https://doi.org/10.5467/JKESS.2012.33.7.618
  8. Kim, S.W., Kim, H.M., Hwang, B.H., Yang, K., and Kim, J.S., 2009, Petrologic and Geomorphologic Characteristics of Micrographic Granite in the Ijin-ri Area, Ulsan. Journal of Petrology Society of Korea, 18, 211-221. (in Korean)
  9. Kim, Y., 2014, A weathering progressing aspect based on physical and chemical properties of tafoni in the Simgok area of Gangneung, Korea. Unpublished M.S. thesis, Seoul National University, Seoul, Korea, 79 p. (in Korean)
  10. Kwon, D.H., 2007, Results of the Research on Korea’s Granite Weathering Landforms and Tasks. Journal of the Korean Geomorphological Association, 14(2), 21-31. (in Korean)
  11. Lee, S.S., 2004, On the study of origin and development of Tafoni at Mt. MAI, Korea. Unpublished M.S. thesis, Chonbuk National University, Jeonju, Korea, 94 p. (in Korean)
  12. McBride, E.F. and Picard, M.D., 2000, Origin and development of tafoni in Tunnel Spring Tuff, Crystal Peak, Utah, USA. Earth Surface Processes and Landforms, 25, 869-879. https://doi.org/10.1002/1096-9837(200008)25:8<869::AID-ESP104>3.0.CO;2-F
  13. McBride, E.F. and Picard, M.D., 2004, Origin of honeycombs and related weathering forms in Oligocene Macigno Sandstone, Tuscan coast near Livorno, Italy. Earth Surface Processes and Landforms, 29, 713-735. https://doi.org/10.1002/esp.1065
  14. McGreevy, J.P., 1985, A preliminary scanning electron microscope study of honeycomb weathering of sandstone in a coastal environment. Earth Surface Processes and Landforms, 10, 509-518. https://doi.org/10.1002/esp.3290100509
  15. Mustoe, G.E., 2010, Biogenic origin of coastal honeycomb weathering. Earth Surface Processes and Landforms, 35, 424-434.
  16. Nagao, K., Ogato, A., Miura, Y.N., and Yamaguchi, T., 1996, K-Ar isotope analysis for K-Ar dating using two modified-VG 5400 mass spectrometer-1: isotope dilution method. Journal of Mass Spectrometer Society of Japan, 44, 39-61. https://doi.org/10.5702/massspec.44.39
  17. Park, H.D., 2004, An Analysis of Weathering Hollows on the Rocks around Mt. Songnisan. Journal of the Korean Geomorphological Association, 11(4), 35-45. (in Korean)
  18. Park, J.H., Park, D.H., Won, B.H., Kang, S.S., and Kim, C.B., 2015, K-Ar Ages of the Volcanic Rocks from the Cretaceous Strata in Gurye Area, Jeonnam Province, South Korea. Journal of Korean Earth Science, 36, 27-35. (in Korean) https://doi.org/10.5467/JKESS.2015.36.1.27
  19. Park, J.S. and Kwon, D.H., 2013, Outcomes and Tasks of the Research on Weathering pits in Korea -The Case of Tafoni and Gnamma-. Journal of the Korean Geomorphological Association, 20(4), 37-50. (in Korean)
  20. Park, K., 2009, A Study on Tafoni Landforms in West Coast and Islands of Korea. Journal of the Korean Geomorphological Association, 16(4), 73-84. (in Korean)
  21. Park, Y.A., Choi, J.Y., Lim, D.I., Choi, K.W., and Lee, Y.K., 1995, Unconformity and stratigraphy of late Quaternary tidal deposits, Namyang bay, west coast of Korea. Journal of Korean Society Oceanography, 30, 332-340.
  22. Rodriguez-Navarro, C., Doehne, E., and Sebastian, E., 1999, Origin of honeycomb weathering: The role of salts and wind. Bulletin of Geological Society of America, 111, 1250-1255. https://doi.org/10.1130/0016-7606(1999)111<1250:OOHWTR>2.3.CO;2
  23. Shin, J.R., Lee, J.K., Choo, C.O., and Park, K.G., 2015, A Study on Weathering Processes of Tafoni in Mt. Cheonsaeng, Gumi, the Republic of Korea: Interpretation of Water Content Data using GIS Interpolation Analysis. Journal of Korean Earth Science, 36, 543-552. (in Korean) https://doi.org/10.5467/JKESS.2015.36.6.543
  24. Shinan-gun, 2000, Chronicle of Shinan. Shinan-gun, 1049p. (in Korean)
  25. Steiger, R.H. and Jager, E., 1977, Subcommission on geochronology: Convention on the use of the decay constant in geo- and cosmochronology. Earth Planetary Science Letter, 36, 359-362. https://doi.org/10.1016/0012-821X(77)90060-7
  26. Turkington, A.V., 1998, Cavernous weathering in sandstone: lessons to be learned from natural exposure. Quarterly Journal of Engineering Geology & Hydrogeology, 31, 375-383. https://doi.org/10.1144/GSL.QJEG.1998.031.P4.11
  27. Twidale, C.R. and Bourne, J.A., 2008, Caves in granitic rocks: types, terminology and origins. Cadernos Lab. Xeoloxico de Laxe Corua, 33, 35-57.
  28. Young, A.R., 1987, Salt as an agent in the development of cavernous weathering. Geology, 15, 962-966. https://doi.org/10.1130/0091-7613(1987)15<962:SAAAIT>2.0.CO;2