• Title/Summary/Keyword: Rock full

Search Result 166, Processing Time 0.021 seconds

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Hydraulic Conductivity Changes Due to Subsidence Using Rock Mass Classification Parameters (암반분류변수를 이용한 침하에 따른 수리전도도 변화 해석)

  • 윤용균;김장순;김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2003
  • The change of strain-dependent hydraulic conductivity around mined panels due to subsidence is examined where normal and shear strains, modulus reduction ratio and joint spacing are major factors controlling the changes of hydraulic conductivity. Modulus reduction ratio and joint spacing are defined through RMR and RQD, respectively. Utilizing these two empirical parameters, changes of hydraulic conductivity values of a full gamut of rock mass conditions are determined. The change of hydraulic conductivity is not apparent in the near surface area and more significant change takes place in the area around mined panels. A zone of strong influence from the subsidence extends to a height of approximately 20m above mined panels. The shear strain does also play the role of increasing a hydraulic conductivity around mined panels. As RMR of rock mass decreases, a hydraulic conductivity is found to be increased and this means that subsidence in a poor rock with low RMR has a great effect on a hydraulic conductivity field.

Resistivity Monitoring of Saturated Rock Cores at Room Temperature (수포화 암석코어의 상온 전기비저항 모니터링)

  • Lee, Sang Kyu;Lee, Tae Jong;Yi, Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.105-114
    • /
    • 2015
  • A long-term resistivity monitoring system has been developed for saturated cores in room temperature and humidity condition. A 3-channel water-pump continuously drops the water onto the top of saturated core sample surrounded by shrinkable tube as well as on the paper filters of the electrodes at both sides of the core sample, by which one can monitor the resistivity changes with maintaining full saturation of the rock core for a week or longer. Monitoring the resistivity changes has been performed with 3 kinds of rock samples including biotite gneiss, andesitic tuff, and shale for 9 days using the system. Consequently, it is proposed two hypothesis that conversion speed of temperature coefficient has close relation to the thermal properties of the rock sample and that the ratio of resistance between dry and saturated conditions for a rock sample can be related to the effective porosity of the sample. The ratio between dry and saturated resistance for the three rock types are 48, 705, and 2, while effective porosity was 3.7%, 3.3%, and 13.0%, respectively.

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.

Influence of complex geological structure on horizontal well productivity of coalbed methane

  • Qin, Bing;Shi, Zhan-Shan;Sun, Wei-Ji;Liang, Bing;Hao, Jian-Feng
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.145-154
    • /
    • 2022
  • Complex geological conditions have a great influence on the mining of coalbed methane (CBM), which affects the extraction efficiency of CBM. This investigation analyzed the complicated geological conditions in the Liujia CBM block of Fuxin. A geological model of heterogeneities CBM reservoirs was established to study the influence of strike direction of igneous rocks and fault structures on horizontal well layout. Subsequently, the dual-porosity and dual-permeability mathematical model was established, which considers the dynamic changes of porosity and permeability caused by gas adsorption, desorption, pressure change. The results show that the production curve is in good agreement with the actual by considering gas seepage in matrix pores in the model. Complicated geological structures affect the pressure expansion of horizontal wells, especially, the closer to the fault structure, the more significant the effect, the slower the pressure drop, and the smaller the desorption area. When the wellbore extends to the fault, the pressure expansion is blocked by the fault and the productivity is reduced. In the study area, the optimal distance to the fault is 70 m. When the horizontal wellbore is perpendicular to the direction of coal seam igneous rock, the productivity is higher than that of parallel igneous rock, and the horizontal well bore should be perpendicular to the cleat direction. However, the well length is limited due to the dense distribution of igneous rocks in the Liujia CBM block. Therefore, the horizontal well pumping in the study area should be arranged along the direction of igneous rock and parallel plane cleats. It is found that the larger the area surrounded by igneous rock, the more favorable the productivity. In summary, the reasonable layout of horizontal wells should make full use of the advantages of igneous rock, faults and other complex geological conditions to achieve the goal of high and stable production.

Study on the Effect of Bolt and Sub-bench on the Stabilization of Tunnel Face through FEM Analysis (FEM해석에 의한 막장볼트 및 보조벤치의 막장안정성 효과에 관한 연구)

  • Kim, Sung-Ryul;Yoon, Ji-Sun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, review was made for the excavation method and optimum bench length for unstable tunnel face in case of rock classification type V in order to make the best use of in-situ bearing capacity. 3D FEM analyses were performed to investigate the influences on the tunnel face and adjacent area with regard to the pattern and number of bolts when face bolts were used as a supplementary measure. As a result of this study, full section excavation method with sub-bench is effective in reducing the displacement greatly due to early section closure. Displacement-resistant effects in accordance with the bolting patterns are grid type, zig-zag type and then circular type in order of their effect. And horizontal extrusion displacement of tunnel face reduces as the number of bolts increase. A grid type face bolt covering $1.5m^2$ of tunnel face could secure the face stability in case of full section excavation method with sub-bench.

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses (부착형 암반앵커기초의 인발지지력 평가)

  • Kim, Dae-Hong;Lee, Yong-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.147-160
    • /
    • 2008
  • This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Analysis of Ultimate Rockfall Energy Resistance of CFT Rock Shed Main Frame (CFT 피암터널 주구조체의 극한 낙석에너지 저항능력 분석)

  • Moon, Jiho;Lee, Juho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.129-135
    • /
    • 2021
  • Rock sheds are a type of rockfall protection facility that is installed on the road near steep slopes, where large amount of rockfall is expected. Rock sheds are generally designed to resist approximately 200 kJ to 3,000 kJ of rockfall energy. In a previous study, a new type rock shed structure having a concrete-filled tube (CFT) main frame was proposed. By using CFT as the main frame in a rock shed, rapid construction is possible. Additionally, high load carrying capacity and ductility can be achieved. The behavior of the proposed rock shed structure was studied via elastic analysis with the equivalent static load of rockfall energy as in a previous study. However, it is necessary to investigate the behavior of the proposed rock shed in more detail with a full 3D finite element (FE) model considering realistic rockfall load. The FE model for the CFT rock shed main frame was developed first in this study. Then, the resistance of the CFT rock shed main frame Under ultimate rockfall energy was investigated.

Mapping the water table at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network using multiple geophysical methods

  • Ju, Hyeon-Tae;Sa, Jin-Hyeon;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • The most effective way to distinguish subsurface interfaces that produce various geophysical responses is through the integration of multiple geophysical methods, with each method detecting both a complementary and unique set of distinct physical properties relating to the subsurface. In this study, shallow seismic reflection (SSR) and ground penetrating radar (GPR) surveys were conducted at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network to map the water table, which was measured at 12 m depth during the geophysical surveys. The water table proved to be a good target reflector in both datasets, as the abrupt transition from the overlying unsaturated weathered rock to the underlying saturated weathered rock yielded large acoustic impedance and dielectric constant contrasts. The two datasets were depth converted and integrated into a single section, with the SSR and GPR surveys conducted to ensure subsurface imaging at approximately the same wavelength. The GPR data provided detailed information on the upper ~15 m of the section, whereas the SSR data imaged structures at depths of 10-45 m. The integrated section thus captured the full depth coverage of the sandy clay, water table, weathered rock, soft rock, and hard rock structures, which correlated well with local drillcore and water table observations. Incorporation of these two geophysical datasets yielded a synthetic section that resembled a simplified aquifer model, with the best-fitting seismic velocity, dielectric constant, and porosity of the saturated weathered layer being $v_{seismic}=1000m/s$, ${\varepsilon}_r=16$, and ${\phi}=0.32$, respectively.

3D Finite Element Analysis of Rock Behavior with Bench Length and Gther Design Parameters of Tunnel (터널의 벤치길이를 중심으로 한 설계변수에 따른 암반거동의 3차원 수치해석)

  • 강준호;정직한;이정인
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Focusing on the bench length, this paper presents the results of 3-dimensional elafto-plastic FE Analysis un tunnels of full face, mini-bench and short bench excavated in weathered rock. Influences of unsupported span, horizontal to vertical stress ratio, thickness of shotcrete on the behavior of rock and support were a1so studied. Results showed that displacements of mini-bench tunnels responded more sensitively to bench lengths than those of short bench. The effects of bench excavation on upper half displacement increased with longer unsupported span. Horizontal to vertical stress ratio showed a greater influence on displacement and preceding displacement ratio or sidewall rather than those of crown and invert.

  • PDF