• Title/Summary/Keyword: Rock excavation

Search Result 682, Processing Time 0.011 seconds

Effect of Step-Wise Excavation Depth on the Earth Pressure against an Excavation Wall in Rock Mass (암반지층 굴착벽체 발생토압에 대한 단계별 굴착깊이의 영향)

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • This paper examined the effect of step-wise excavation depth on the earth pressure against an excavation wall in rock mass. Numerical parametric studies were conducted based on the Discrete Element Method (DEM) to carry out the problems in rock mass. Controlled parameters included step-wise excavation depth, rock types, and joint conditions (joint shear strength and joint inclination angle). The magnitude and distribution characteristics of the induced earth pressure in a jointed rock mass were investigated and compared with Peck's earth pressure for soil ground. The results showed that the earth pressure against an excavation wall in rock mass were highly affected by different rock and joint conditions, and the effect of step-wise excavation depth increased as a rock type is deteriorated more. In addition, it was found that the earth pressure against an excavation wall in rock mass might be considerably different from Peck's empirical earth pressure for soil ground.

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

Effect of the Permeability of Excavation Wall on the Earth Pressure in a Jointed Rock Mass

  • Son, Moorak;Adedokun, Solomon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.2
    • /
    • pp.13-21
    • /
    • 2018
  • The magnitude and distribution of earth pressure on the excavation wall in jointed rock mass were examined by considering different wall permeability conditions as well as rock types and joint inclination angles. The study was numerically extended based on a physical model test (Son & Park, 2014), considering rock-structure interactions with the discrete element method, which can consider various characteristics of rock joints. This study focused on the effect of the permeability condition of excavation wall on the earth pressure in jointed rock masses under a groundwater condition, which is important but has not been studied previously. The study results showed that the earth pressure was highly influenced by wall permeability as well as rock type and joint condition. Earth pressure resulted from the study was also compared with Peck's earth pressure in soil ground, and the comparison clearly showed that the earth pressure in jointed rock mass can be greatly different from that in soil ground.

Case Study of Ground Behavior Analysis of Soft and Hard Rock Layers with Fractured Zones in Deep Excavation (깊은 굴착에서 파쇄대를 갖는 연암 및 경암 지층의 지반 거동분석 사례연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.521-532
    • /
    • 2008
  • Supporting system design and construction management for the soft and hard rock layers with fractured zones are very important theme for the safety of temporary retaining wall, surrounding ground and structures in the urban deep excavation for the construction of subway, railway, building etc. The prevailing design method of supporting system for the soft and hard rock layers in the deep excavation is mostly carrying out by simplification without proper consideration for the characteristic of rock discontinuities. Therefore the behaviors of rock discontinuities and fractured zones dominate the whole safety of excavation work in the real construction stage, serious disaster due to the failure of temporary retaining wall can be induced in the case of developing large deformations in the ground and large axial forces in the supporting system. This paper introduces examples of deep excavation where the soft and hard rock layers with fractured zones were designed to be supported by shotcrete and rock bolt, deformations of corresponding ground and supporting systems in the construction period and increments of axial force in the upper earth anchors and strut due to the these deformations were investigated through detailed analysis of measurement data, the results were so used for the management of consecutive construction that led to the safe and economical completion of excavation work. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Field measurement and numerical simulation of excavation damaged zone in a 2000 m-deep cavern

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Qin, Yang;Li, Peng;Li, Yujie
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.399-413
    • /
    • 2018
  • This paper addresses the issue of field measurement of excavation damage zone (EDZ) and its numerical simulation method considering both excavation unloading and blasting load effects. Firstly, a 2000 m-deep rock cavern in China is focused. A detailed analysis is conducted on the field measurement data regarding the mechanical response of rock masses subjected to excavation and blasting operation. The extent of EDZ is revealed 3.6 m-4.0 m, accounting for 28.6% of the cavern span, so it is significantly larger than rock caverns at conventional overburden depth. The rock mass mechanical response subjected to excavation and blasting is time-independent. Afterwards, based on findings of the field measurement data, a numerical evaluation method for EDZ determination considering both excavation unloading and blasting load effects is presented. The basic idea and general procedures are illustrated. It features a calibration operation of damage constant, which is defined in an elasto-plastic damage constitutive model, and a regression process of blasting load using field blasting vibration monitoring data. The numerical simulation results are basically consistent with the field measurement results. Further, some issues regarding the blasting loads, applicability of proposed numerical method, and some other factors are discussed. In conclusion, the field measurement data collected from the 2000 m-deep rock cavern and the corresponding findings will broaden the understanding of tunnel behavior subjected to excavation and blasting at great depth. Meanwhile, the presented numerical simulation method for EDZ determination considering both excavation unloading and blasting load effects can be used to evaluate rock caverns with similar characteristics.

Estimation of the excavation damage zone in TBM tunnel using large deformation FE analysis

  • Kim, Dohyun;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-335
    • /
    • 2021
  • This paper aims to estimate the range of the excavation damaged zone (EDZ) formation caused by the tunnel boring machine (TBM) advancement through dynamic three-dimensional large deformation finite element analysis. Large deformation analysis based on Coupled Eulerian-Lagrangian (CEL) analysis is used to accurately simulate the behavior during TBM excavation. The analysis model is verified based on numerous test results reported in the literature. The range of the formed EDZ will be suggested as a boundary under various conditions - different tunnel diameter, tunnel depth, and rock type. Moreover, evaluation of the integrity of the tunnel structure during excavation has been carried out. Based on the numerical results, the apparent boundary of the EDZ is shown to within the range of 0.7D (D: tunnel diameter) around the excavation surface. Through series of numerical computation, it is clear that for the rock of with higher rock mass rating (RMR) grade (close to 1st grade), the EDZ around the tunnel tends to increase. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional to the magnitude of the EDZ. However, the relationship between the formation of the EDZ and the stability of the tunnel was not found to be consistent. In case where the TBM excavation is carried out in hard rock or rock under high confinement (excavation under greater depth), large range of the EDZ may be formed, but less strain occurs along the excavation surface during excavation and is found to be more stable.

An analysis of rock mass characteristics which influence the choice of support

  • Bednarek, Lukasz;Majcherczyk, Tadeusz
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • There are currently three common methods for selecting excavation supports in Polish hard coal mines. While many factors are considered when choosing appropriate support, these do not include layering or cracking in the excavation ceiling. Although global classifications of rock mass are rarely used in hard coal mines, they are utilised much more frequently during the construction of underground structures such as tunnels. Mining classifications of rock mass have been developed (e.g., in Germany) and they rely on a number of factors but are often related to local mining and geological conditions. This paper discusses the selected findings of a study carried out on seven excavation sites with diverse mining and geological characteristics. Based on the collected data, two indicators were developed to describe rock mass quality. The first indicator is referred to as the roof lithology index WL and describes the quality of the excavation roof in terms of its layering and lithology. The second indicator is the crack intensity factor n and represents the amount of cracks in an excavation's roof. The correctness of the developed indicators was supported by reliable data from the excavation in which the designed support did not fulfill its task but was changed at a later stage, after calculating the proposed indicators.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Blastability Quality System (BQS) for using it, in bedrock excavation

  • Christaras, B.;Chatziangelou, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.823-845
    • /
    • 2014
  • Success in the excavation of foundations is commonly known as being very important in asserting stability. Furthermore, when the subjected formation is rocky and the use of explores is required, the demands of successful blasting are multiplied. The quick and correct estimation of excavation's characteristics may help the design of building structures, increasing their safety. The present paper proposes a new classification system which connects blastability and rock mass quality. This new system primarily concerns poor and friable rock mass, heavily broken with mixture of angular and rounded rock pieces. However, it should concern medium and good quality rock mass. The Blastability Quality System (BQS) can be an easy and widely - used tool as it is a quick calculator for blastability index (BI) and rock mass quality. Taking into account the research calculations and the parameters of BQS, what has been at question in this paper is the effect of BI magnitude on a geological structure.

Effect of abrasive waterjet parameters on rock removal (연마재 워터젯 변수가 암석제거에 미치는 영향)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.421-435
    • /
    • 2012
  • Rock excavation (removal) tests are performed with effective parameters using an abrasive waterjet. For verification of the field rock excavation capabilities, the removal performance and level of efficiency are analyzed for hard granite rock in terms of the water pressure, exposure time of the jet, and the standoff distance. In particular, experimental tests are performed with a long standoff distance required condition in the real excavation field. The rock removal performance level changes according to the rock properties. In this study, various rock specimens are used and P-wave velocities are measured in order to determine the correlation between the removal performance and the P-wave velocity. As a result of the experimental study, the effect of waterjet parameters on rock removal is analyzed.