Browse > Article
http://dx.doi.org/10.12989/gae.2020.21.4.371

An analysis of rock mass characteristics which influence the choice of support  

Bednarek, Lukasz (AGH University of Science and Technology)
Majcherczyk, Tadeusz (AGH University of Science and Technology)
Publication Information
Geomechanics and Engineering / v.21, no.4, 2020 , pp. 371-377 More about this Journal
Abstract
There are currently three common methods for selecting excavation supports in Polish hard coal mines. While many factors are considered when choosing appropriate support, these do not include layering or cracking in the excavation ceiling. Although global classifications of rock mass are rarely used in hard coal mines, they are utilised much more frequently during the construction of underground structures such as tunnels. Mining classifications of rock mass have been developed (e.g., in Germany) and they rely on a number of factors but are often related to local mining and geological conditions. This paper discusses the selected findings of a study carried out on seven excavation sites with diverse mining and geological characteristics. Based on the collected data, two indicators were developed to describe rock mass quality. The first indicator is referred to as the roof lithology index WL and describes the quality of the excavation roof in terms of its layering and lithology. The second indicator is the crack intensity factor n and represents the amount of cracks in an excavation's roof. The correctness of the developed indicators was supported by reliable data from the excavation in which the designed support did not fulfill its task but was changed at a later stage, after calculating the proposed indicators.
Keywords
support; stability; excavation; rock lithology; crack;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rehman, H., Ali, W., Naji, A.M., Kim, J., Abdullah, R.A. and Yoo, H. (2018), "Review of rock-mass rating and tunneling quality index systems for tunnel desing: Development, refinement, application and limitation", Appl. Sci., 8(8), 1-27. https://doi.org/ 10.3390/app8081250.
2 Rulka, K., Mateja, J., Kowalski, E., Skrzynski, K., Stalega, S., Wojtusiak, A. and Schinohl, J. (2001), Uproszczone Zasady Doboru Obudowy Odrzwiowej Wyrobisk Korytarzowych W Zakladach Wydobywajacych Wegiel Kamienny, Wydawnictwo GIG, Katowice, Poland (in Polish).
3 Singh, B., Jethwa, J., Dube, A. and Singh, B. (1992), "Correlation between observed support pressure and rock mass quality", Tunn. Undergr. Sp. Technol., 1(1), 59-74. https://doi.org/10.1016/0886-7798(92)90114-W.   DOI
4 Sun, Y., Chen, J., Liu, M., Wu, P., Song, D. and You, Z. (2014), "Classification of deep buried long tunnel surrounding rock in karst fracture belt areas", Elect. J. Geotech. Eng., 19, 4765-4776.
5 Terzaghi, K. (1946), Introduction to Tunnel Geology, in Rock Tunneling with Steel Supports, by Proctor and White, 5-153.
6 Verman, M., Singh, B., Viladkar, M. and Jethwa, J. (1997), "Effect of tunnel depth on modulus deformation of rock mass", Rock Mech. Rock Eng., 30(3), 121-127. https://doi.org/10.1007/BF01047388.   DOI
7 Witthaus, H. and Polysos, N. (2007), "Rock mass classification in German hard-coal mining: standards and application", Proceedings of the International Workshop on Rock Mass Classification in Underground Mining, Vancouver, Canada, May.
8 Zhang, W., Zhang, D. and Xu, M. (2013), "Fast drivage technology for large sections of deep coal-rock roadway in complicated geological conditions", Elect. J. Geotech. Eng., 13, 1939-1950.
9 Barton, N., Lien, R. and Lunde, J. (1974), "Engineering classification of rock masses for the design of rock support", Rock Mech., 6, 189-236. https://doi.org/10.1007/BF01239496.   DOI
10 Bieniawski, Z.T. (1973), "Engineering classification of jointed rock masses", Trans. S. Afr. Inst. Civ. Eng., 15(12), 335-344.
11 Calleja, J. (2006), "Rapid rating using coal mine roof rating to provide rapid mine roof characterisation from exploration drilling", Proceedings of the 7th Underground Coal Operators Conference, Wollongong, Australia, July.
12 Chudek, M. and Duzy, S. (2005), "Geotechniczne problemy utrzymania wyrobisk korytarzowych w zlozonych warunkach geologiczno-gorniczych", Gornictwo i Geoinzynieria, 3/1(29), 157-164 (in Polish).
13 Chudek, M., Duzy, S., Kleta, H., Kleczek, Z., Stoinski, K. and Zorychta, A. (2000), Zasady Doboru i Projektowania Obudowy Wyrobisk Korytarzowych i ich Polaczen w Zakladach Gorniczych Wydobywajacych Wegiel Kamienny, Wydawnictwo Politechniki Slaskiej, Gliwice-Krakow-Katowice, Poland (in Polish).
14 Aksoy, C.O., Uyar, G.G., Posluk, E., Ogul, K., Topal, I. and Kucuk, K. (2016), "Non-deformable support system application at tunnel-34 of Ankara-Istanbul high speed railway project", Struct. Eng. Mech., 58(5), 869-886. http://doi.org/10.12989/sem.2016.58.5.869.   DOI
15 Gonzalez de Vallejo, L.I. (2003), "SRC rock mass classification of tunnels under high tectonic stress excavated in weak rocks", Eng. Geol., 69(3-4), 273-285. https://doi.org/10.1016/S0013-7952(02)00286-7.   DOI
16 Babets, D.V., Sdvyzhkova, О.О., Larionov, M.H. and Tereshchuk, R.M. (2017), "Estimation of rock mass stability based on probability approach and rating systems", Scientific Bull. Nat. Min. Univ., 2, 58-64.
17 Daraei, A. and Zare, S. (2019), "Modified criterion for prediction of tunnel deformation in non-squeezing ground conditions", J. Modern Transport., 27(1), 11-24. https://doi.org/10.1007/s40534-018-0173-y.   DOI
18 Drzezla, B., Mendera, Z., Barchan, A., Glab, L. and Schinohl, J. (2000), Obudowa Gornicza. Zasady Projektowania i Doboru Obudowy Wyrobisk Korytarzowych w Zakladach Gorniczych Wydobywajacych Wegiel Kamienny, Wydawnictwo Gornicze, Gliwice, Poland (in Polish).
19 Hoek, E. and Brown, E.T. (1998), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34, 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.   DOI
20 Hoek, E., Kaiser, P. and Bawden, W. (1995), Support of Underground Excavation in Hard Rock, Rotterdam, The Netherlands.
21 Khorzoughi, M., Hall, R. and Apel, D.B. (2018), "Enhanced rock mass characterization using measurement while drilling (MWD) techniques", Int. J. Min. Sci. Technol., 28(6), 859-864.   DOI
22 Ko, J. and Jeong, S. (2017), "A study on rock mass classifications and tunnel support systems in unconsolidated sedimentary rock", Sustainability, 9(4), 573. https://doi.org/10.3390/su9040573.   DOI
23 Lubosik, Z., Waclawik, P., Horak, P. and Wrana, A. (2017), "The influence of in-situ rock mass stress conditions on deformation and load of gateroad supports in hard coal mine", Procedia Eng., 191, 975-983. https://doi.org/10.1016/j.proeng.2017.05.269.   DOI
24 Mark, C. and Molinda, G. (2003), "The coal mine roof rating in mining engineering practice", Proceedings of 4th Underground Coal Operators Conference, Wollongong, Australia, February.
25 Majcherczyk, T. and Bednarek, L. (2017), "Metoda oceny deformacji obudowy wyrobiska korytarzowego", Przeglad Gorniczy, 73(10), 44-50 (in Polish).
26 Majcherczyk, T., Malkowski, P. and Niedbalski, Z. (2012), Ocena Schematow Obudowy i Skutecznosci Projektowania Wyrobisk Korytarzowych w Kopalniach Wegla Kamiennego, Wydawnictwa AGH, Krakow, Poland (in Polish).
27 Malkowski, P., Niedbalski, Z. and Majcherczyk, T. (2016), "Roadway design efficiency indices for hard coal mines", Acta Geodynamica Geomaterialia, 13(2), 201-211. https://doi.org/10.13168/AGG.2016.0002.
28 Mohammadi, M. and Hossaini, M.F. (2017), "Modification of rock mass rating system: Interbedding of strong and weak rock layers", J. Rock Mech. Geotech. Eng., 6(6), 1165-1170. https://doi.org/10.1016/j.jrmge.2017.06.002.   DOI
29 Opolony, K. and Witthaus, H. (2003), "Comparison of multipleand single-entry roadway systems for highly stressed longwalls", Proceedings of the 22nd International Conference on Ground Control in Mining, Morgantown, West Virginia, U.S.A., August.
30 Pantaweesak, P., Saontamino, P. and Tonnayopas, D. (2019), "Alternative software for evaluating preliminary rock stability of tunnel using rock mass rating (RMR) and rock mass quality (Q) on android smartphone", Eng. J., 23(1), 95-108. https://doi.org/10.4186/ej.2019.23.1.95.   DOI
31 Panthee, S. (2016), "Vertical and horizontal support pressure along the Kulekhani III Hep tunnel alignment, Nepal", J. Inst. Sci. Technol., 21(1), 112-118. https://doi.org/10.3126/jist.v21i1.16062   DOI