• Title/Summary/Keyword: Rock Strength

Search Result 1,147, Processing Time 0.026 seconds

Estimation to Shear Strength of Basalt using Lade's Three-dimensional Failure Criterion (Lade의 3차원 파괴규준을 이용한 현무암의 전단강도 산정)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • In this study, a series of triaxial tests to Jeju basalt were carried out and then shear strength parameters of rock were estimated by the Lade's three-dimensional failure criterion. Also, the characteristics of shear strength parameters and failure plane which were estimated by the three-dimensional failure criterion were analyzed and this failure criterion was compared with the Mohr-Coulomb failure criterion. The variables of ${\eta}_1$ and m are derived from the relationship between ($I_1^3/I_3-27$) and ($P_a/I_1$) during the failure period using the Lade's three-dimensional failure criterion. The failure plane size of Tracy-basalt has the largest plane and that of Scoria has the smallest plane among other octahedral planes which is the three-dimensional failure plane. Also, the failure plane of Tracy-basalt is formed as a triangle and that of Scoria is formed as a circle among other octahedral planes. As the result of comparison with the triaxial test results and the Lade's failure envelope and the Mohr-Coulomb failure envelope, the Lade's failure envelope matched up under higher stress, while the Mohr-Coulomb failure envelope matched up under lower stress. Also, the Lade's three-dimensional failure plane is larger than the Mohr-Coulomb three-dimensional failure plane. It means that the shear strength parameters estimated by the Lade's failure criterion is larger than that of the Mohr-Coulomb failure criterion.

  • PDF

Quality of Building Stones by Physical Properties (물성에 의한 석재의 품질도)

  • 박덕원
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Building stones are used mainly as a material for making decoration and sculpture, and consequently they must have predominant physical properties extensively. Among various physical properties, the coefficient of pore dominates the usefulness of building stones, so the plans were made for establishing the quality classification of building stones with respect to the nature of pore. For this study, bore-hole core samples according to the depth of the biotite granites and the granitic gneiss were applicated. From the related chart between porosity and absorption ratio, Mungyeong granitic gneiss($Gn_1$) shows the widest phase of distribution in the range of measurement values, and the values decrease in the order of Pocheon granite($Gr_2$) and Mungyeong granite($Gr_1$) in the range. The strength of each rock mass varies with the degree of alteration. Also in correlation between compressive strength and tensile strength, the range of measurement values decrease in the order of $Gn_1$, $Gr_2$and $Gr_1$. Porosity is adopted as a representative physical property for establishing the quality classification of building stones, and then relative evaluation was made with regard to various physical properties. From the related chart between porosity(n)-specific gravity(G), absorption ratio(Ab), compressive strength(${\sigma}_{c}$), tensile strength(${\sigma}_{t}$), shore hardness(Hs) and Young's modulus($E_{t}$), standard of each grade is established.

New Joint Roughness Coefficient and Shear Strength Criterion Based on Experimental Verification of Standard Roughness Profile (표준 거칠기 단면의 실험적 검증에 의한 새로운 거칠기 계수 및 전단강도 기준식)

  • Jang, Hyun-Sic;Sim, Min-Yong;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.561-577
    • /
    • 2021
  • The ten standard roughness profiles suggested by Barton and Choubey (1977) were extended to make three-dimensional (3D) joint models whose profiles were identical at any cross section. Replicas of joint models were produced using plaster of Paris, and direct shear tests were performed to verify the joint roughness coefficients (JRC) of the standard roughness profiles. Joint shear strengths measured by direct shear tests were compared with those predicted by the shear failure criterion suggested by Barton (1973) based on JRC, joint compressive strength (JCS), and joint basic friction angle (𝜙b). Shear strengths measured from joints of the first and fourth standard roughness profiles were close to predicted values; however, shear strengths measured from the other joint models were lower than predicted, the differences increasing as the roughness of joints increased. Back calculated values for JRC, JCS, and from the results of the direct shear tests show measured shear strengths were lower than predicted shear strengths because of the JRC values. New JRC were back calculated from the measured shear strength and named JRCm. Values of JRCm were lower than the JRC for the standard roughness profiles but show a strong linear relationship to JRC. Corrected JRCm values for the standard roughness profiles are provided and revised relationships between JRCm and JRC, and new shear strength criterion are suggested.

The Anisotropic Mechanical Characteristics of the Metamorphic Rocks Distributed in the Samkwang-Mine Area, Cheongyang, Chungnam (충남 청양군 운곡면 일원에 분포하는 편마암의 강도이방성 특성 - 점재하강도지수와 일축압축강도의 관계를 중심으로 -)

  • 배대석;송무영;김경수
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.54-67
    • /
    • 1991
  • In geological media with anisotropic properties, the strength anisotropy in intact rock is the most important issue in engineering aspects. Point-ioad(P/L) strength test designed to estimate the uniaxial compressive strength(${\sigma}_c$) can be used to evaluate the anisotropic strength characteristics of rocks. The relationship between ${\sigma}_c$ and P/L strength indices(I$_s$), obtained from the banded gneisses distributed in the Cheongyang area, varies depend mainly on the dip angle($\beta$) of foliation. The axial P/L strength indicies(I$_{sa}$) decreases with the increment of $\beta$, whereas diametral P/L strength indices(I$_{sa}$) increase with it. However, the ${\sigma}_c$ decreases with the increments of $\beta$ below about 40$^{\circ}$, but it increases with the increments of $\beta$ over about 40$^{\circ}$ in general. The correlation between ${\sigma}_c$ and I$_s$ suggests that ${\sigma}_c$ is related to the Isa withing low angle($\beta$<40$^{\circ}$) and the I$_{sd}$ within high angle ($\beta$>40$^{\circ}$), respectively. The ratios of I$_s$ to ${\sigma}_c$ are obtained as 11 to 14 in the the gneisses in the study area. The ratio of 24, which is generally adopted value, cannot always be truthworth to the gneisses in the study area. The ratio for the dykes, however, show a good correlation as 21 to 24.5 and, the value of 24 can be used for a homogeneous and isotropic materials such as dykes.

  • PDF

Chemo-Mechanical Analysis of Bifunctional linear DGEBF/Aromatic Amino Resin Casting Systems (DGEBF/방향족아민 경화계의 벤젠링 사이에 위치한 Methyl기와 Sulfone기가 유발하는 물성변화에 대한 연구)

  • Lee Jae-Rock;Myung In-Ho
    • Composites Research
    • /
    • v.18 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • To determine the effect of chemical structure of aromatic amino curing agents on thermal and mechanical properties, standard epoxy resin DGEBF (diglycidylether of bisphenol F) was cured with diaminodiphenyl methane (DDM) and diaminodiphenyl sulphone (DDS) in a stoichiometrically equivalent ratio. From this work the effect of aromatic amino curing agents on the thermal and mechanical properties is significantly influenced by the chemical structure of curing agents. In contrast, the results show that the DGEBF/DDS system having the sulfone structure between the benzene rings had higher values in the thermal stability, density, shrinkage ($\%$), thermal expansion coefficient, tensile modulus and strength, flexural modulus and strength than the DGEBF/DDM system having methylene structure between the benzene rings, whereas the DGEBF/DDS system presented low values in maximum exothermic temperature, conversion of epoxide, and grass transition temperature. These results are caused by the relative effects of sulfone group having strong electronegativity and methylene group having (+) repulsive property. The result of fractography shows that the grain distribution of DGEBF/DDS system is more irregular than that of the DGEBF/DDM system.

Basic Study for Development of Qigong Exercise Appropriate for Musculoskeletal Characteristics of Seniors (노인의 근골격계 특성에 적합한 기공운동 개발을 위한 기초연구)

  • Kim, Yi Soon;Lee, Jeong Won;Kim, Gyeong Cheol;Park, Tae Soeb;Kwak, Yi Sub;Lee, Hai-Woong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.115-123
    • /
    • 2014
  • Objective : The objective of this study is to develop a Qigong exercise program to reinforce musculoskeletal system of seniors appropriate for physical strength and conditions of seniors aged 65 years or above based on health Qigong exercise of oriental medicine. Method : Qigong exercise motions that can improve strength, muscular endurance, flexibility, and cardiovascular endurance of seniors were developed by primarily performing literature review of Qigong experts on the fields like oriental medicine, Qigong exercise, physical education and health science and secondarily using motion training for increased validity of motions. Results : The Qigong exercise program for musculoskeletal system of seniors was designed with 12 motions repeated 8 times and 20 minutes per session, including shoulder exercises (alternate turning of left and right shoulders, turning both arms back and forth, holding and lifting elbow to put it aside), waist exercises (wrapping the head with hands to bow, twisting waist while looking at the tip of hand, large spinning of ball, putting hands together to pull back), and knee exercises (going up a down while lifting a rock, balancing the body while lifting a knee, lifting and spreading knees while drawing circle with arms, raising both arms to the side while lifting heels, breathing). Conclusion : Once the effects of Qigong exercise for musculoskeletal system of seniors developed in this study are tested, the program is expected to contribute to development of Qigong exercise, a core part of oriental medicine health improvement project.

Blast Coefficient for Bench Blasting (벤치발파 설계에서 발파계수 설정에 관한 연구)

  • Kim, Hee-Do;Kim, Jung-Kyu;Ko, Young-Hun;Noh, You-Song;Shin, Myeong-Jin;Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2015
  • In this study, the domestic bench blasting sites were researched to set the blast coefficient C according to the type of rock and type of industry. With the use of the experimental data on the representative industrial explosives and the data of the manufacturers'data on explosives, powder coefficient e was set up. The blast coefficient C was 0.21~0.30 when the average value for 5 representative kinds of rocks including granite was searched. The blast coefficient C for quarrying, mining and construction sites were 0.22, 0.13 and 0.26 respectively. On the other hand, powder coefficient e was obtained in four elements such as reactive energy, ballistic mortar test, VOD, Langefors'strength per unit weight. e value for emulsion which is one of the representative explosives was found to be 1 while those of high performance emulsion and ANFO were found to be 0.9 and 1, respectively.

Numerical study on contact behavior of TSL (Thin Spray-on Liner) (접촉 거동을 고려한 TSL(Thin Spray-on Liner)의 수치해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Lee, Kicheol;Kim, Dongwook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.665-674
    • /
    • 2015
  • A TSL (Thin Spray-on Liner) which consists of polymers has a higher initial strength, faster construction time and higher waterproofing performance than the conventional cementitious shotcrete. Main supporting mechanism of TSL is the adhesion and tensile strength which is distinct from the conventional shotcrete. Even though highly in demand due to its outstanding characteristics, TSL is not yet well-known support material. In this study, to evaluate contact behavior of TSL, numerical analysis was performed with comparing result from laboratory tests. From the analysis, cohesive behavior at the contact surface between TSL and rock can be evaluated by using combination of cohesive and the damage model. In addition, results show that the cohesive stiffness controled slope between force and displacement, the fracture energy controled level of force at the contact.

Homogenization Analysis for Calculating Elastic Modulus of Composite Geo-materials (복합지반물질의 탄성계수 산정을 위한 균질화 해석)

  • Seo Yong-Seok;Yim Sung-Bin;Baek Yong;Kim Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.227-233
    • /
    • 2006
  • Bedrock is inhomogeneous for its genetically diverse origins and geological conditions when it forms, and especially, conglomerates and core-stones are one of these typical composite geo-materials composed of weak matrixes and strong pebbles. Mechanical properties of these composite bedrocks, like a conglomerate, generally vary depending on the mechanical properties and distributions of pebbles and the matrix. Therefore, regarding the consequence of understanding mechanical property of bedrocks in the designing slopes, tunnels, and other engineering facilities, empirical rock classification methods generally applied in the mechanical property modeling may not be suitable and rather, we may need some other classification methods, or tests more specific for these inhomogeneous composite bedrocks. This study includes a series of analyses to see elastic behaviors and modulus of composite geo-materials using homogenization theory. Forty nine case models were made for the elastic analysis with considering 5 factors such as gravel content, gravel size, strength of matrix, sorting and dip angle. The results analyzed are applicable to calculate elastic modulus of composite geo-materials as conglomerates and core-stones.

Slope stabilization with high-performance steel wire meshes in combination with nails and anchors

  • Rudolf Ruegger;Daniel Flum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.3-38
    • /
    • 2000
  • Slope draperies in soil and rock are a well known method to avoid rockfalls into the roads or onto housings. Common wire mesh or a combination of wire mesh and wire rope nets are pinned to the slope by the means of fully grouted nails or anchors. Most of these installations have not been designed to stabilize the slope, but simply avoid the rocks from bouncing. The combination of soil- or rocknailing with a designable flexible facing system offers the advantage of a longterm stabilization of slopes and can replace other standard methods for slope stabilization. The capability to transfer axial and shear loads from the flexible facing system to the anchor points is most decisive for the design of the stabilization system. But the transfer of forces by mesh as pure surface protection devices is limited on account of their tensile strength and above all also by the possible force transmission to the anchoring points. Strong wire rope nets increase the performance for slope stabilizations with greater distances between nails and anchors and are widely used in Europe. However, they are comparatively expensive in relation to the protected surface. Today, special processes enable the production of diagonally structured mesh from high-tensile steel wire. These mesh provide tensile strengths comparable to wire rope nets. The interaction of mesh and fastening to nail / anchor has been investigated in comprehensive laboratory tests. This also in an effort to find a suitable fastening plates which allows an optimal utilization of the strength of the mesh in tangential (slope-parallel) as well as in vertical direction (perpendicular to the slope). The trials also confirmed that these new mesh, in combination with suitable plates, enable substantial pretensioning of the system. Such pretensioning increases the efficiency of the protection system. This restricts deformations in the surface section of critical slopes which might otherwise cause slides and movements as a result of dilatation. Suitable dimensioning models permit to correctly dimension such systems. The new mesh with the adapted fastening elements have already been installed in first pilot projects in Switzerland and Germany and provide useful information on handling and effects.

  • PDF