• 제목/요약/키워드: Rocchio algorithm

검색결과 8건 처리시간 0.019초

로치오 알고리즘을 이용한 학술지 논문의 디스크 립터 자동부여에 관한 연구 (A Study on the Automatic Descriptor Assignment for Scientific Journal Articles Using Rocchio Algorithm)

  • 김판준
    • 정보관리학회지
    • /
    • 제23권3호
    • /
    • pp.69-89
    • /
    • 2006
  • 로치오 알고리즘에 기초한 통제어휘 자동색인 또는 텍스트 범주화에서 적용되어 온 여러 성능 요인들을 재검토하였고, 성능 향상을 위한 기본적인 방법을 찾아보았다. 또한, 동등한 조건에서 통제어휘 자동색인을 위한 로치오 알고리즘 기반 방법의 성능을 다른 학습기반 방법들의 성능과 비교하였다. 결과에 따르면, 통제어휘 자동색인을 위한 로치오 기반의 프로파일 방법은 구현의 용이성과 컴퓨터 처리시간 측면의 경제성이라는 기존의 장점을 그대로 유지하면서도, 다른 학습기반 방법들(SVM, VPT, NB)과 거의 동등하거나 더 나은 성능을 보여주었다. 특히, 색인전문가의 색인작업을 지원하는 반-자동 색인의 목적으로는 비교적 높은 수준의 재현율을 유지하면서 학습 데이터의 증가에 따라 정확률이 크게 향상되는 로치오 알고리즘을 이용한 방법을 우선적으로 고려할 수 있을 것이다.

협력적 여과 시스템에서 귀납 추리를 이용한 순위 결정 (Ranking by Inductive Inference in Collaborative Filtering Systems)

  • 고수정
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권9호
    • /
    • pp.659-668
    • /
    • 2010
  • 협력적 여과 시스템은 새로운 사용자의 행위를 파악하고 사용자가 흥미로워할 아이템을 추천해주기 위해서 사용자들에 대한 새로운 정보를 필요로 한다. 이러한 정보를 획득하기 위하여 협력적 여과 시스템은 기존 데이터를 기반으로 학습을 하고, 그 결과에 따라 사용자에 대한 새로운 정보를 찾아낼 수 있다. 본 논문에서는 사용자에 대한 새로운 정보를 획득하기 위한 방법으로 귀납적 추리 방법을 제안하고, 추리된 사용자의 정보를 이용하여 아이템의 순위를 결정한다. 제안된 방법에서는 귀납적 기계 학습 방법인 NMF를 이용하여 사용자를 학습시켜서 모든 사용자들을 그룹으로 군집시키고, 각 그룹으로부터 카이제곱을 이용하여 그룹의 특징을 추출한다. 다음으로, 귀납 추리 방법의 하나인 베이지언 확률모델을 이용하여 새로운 사용자가 입력한 평가값과 각 그룹의 특징을 기반으로 사용자를 적합한 그룹으로 분류한다. 마지막으로, 사용자가 결측한 아이템을 대상으로 로치오(Rocchio) 알고리즘을 적용하여 아이템의 순위를 결정한다.

퍼지추론 기반 대표 키워드 추출방법의 성능 평가 (Performance Evaluation of the Extractiojn Method of Representative Keywords by Fuzzy Inference)

  • 노순억;김병만;오상엽;이현아
    • 한국산업정보학회논문지
    • /
    • 제10권1호
    • /
    • pp.28-37
    • /
    • 2005
  • 본 논문은 퍼지 추론을 이용하여 소수문서로부터 대표 용어들을 추출하고 가중치를 부여하는 기존 방법의 유용성을 평가하고자 GIS (Generalized Instance Set) 알고리즘에 이를 적용시켜 그 성능을 평가하여 보았다. GIS 는 학습 문서 집합에 대한 일반화 (generalization) 과정을 통해 문서 그룹들을 형성하고 이 그룹의 대표 문서 (generalized instance)를 생성한 후 k- 알고리즘을 적용하는 방법이다. 본 논문에서는 바로 이 일반화 과정의 한 방법으로 퍼지 추론을 이용한 방법을 사용하였다. 상대적 성능 평가를 위하여 이 일반화(generalization) 과정에 Rocchio와 Widrow-Hoff 방법도 적용시켜 문서 분류 성능을 비교하였다. 실험 결과, 긍정적 문서만을 고려할 경우는 좋은 성능을 보이지만 부정적 문서를 같이 고려할 경우는 성능이 상대적으로 좋지 않음을 확인 할 수 있었다.

  • PDF

용어 가중치부여 기법을 이용한 로치오 분류기의 성능 향상에 관한 연구 (A Study on the Performance Improvement of Rocchio Classifier with Term Weighting Methods)

  • 김판준
    • 정보관리학회지
    • /
    • 제25권1호
    • /
    • pp.211-233
    • /
    • 2008
  • 로치오 알고리즘에 기반한 자동분류의 성능 향상을 위하여 두 개의 실험집단(LISA, Reuters-21578)을 대상으로 여러 가중치부여 기법들을 검토하였다. 먼저, 가중치 산출에 사용되는 요소를 크게 문헌요소(document factor), 문헌집합 요소(document set factor), 범주 요소(category factor)의 세 가지로 구분하여 각 요소별 단일 가중치부석 기법의 분류 성능을 살펴보았고, 다음으로 이들 가중치 요소들 간의 조합 가중치부여 기법에 따른 성능을 알아보았다. 그 결과, 각 요소별로는 범주 요소가 가장 좋은 성능을 보였고, 그 다음이 문헌집합 요소, 그리고 문헌 요소가 가장 낮은 성능을 나타냈다. 가중치 요소 간의 조합에서는 일반적으로 사용되는 문헌 요소와 문헌집합 요소의 조합 가중치(tfidf or ltfidf)와 함께 문헌 요소를 포함하는 조합(tf*cat or ltf*cat) 보다는, 오히려 문헌 요소를 배제하고 문헌 집합 요소를 범주 요소와 결합한 조합 가중치 기법(idf*cat)이 가장 좋은 성능을 보였다. 그러나 실험집단 측면에서 단일 가중치와 조합 가중치를 서로 비교한 결과에 따르면, LISA에서 범주 요소만을 사용한 단일 가중치(cat only)가 가장 좋은 성능을 보인 반면, Reuters-21578에서는 문헌집합 요소와 범주 요소간의 조합 가중치(idf*cat)의 성능이 가장 우수한 것으로 나타났다. 따라서 가중치부여 기법에 대한 실제 적용에서는, 분류 대상이 되는 문헌집단 내 범주들의 특성을 신중하게 고려할 필요가 있다.

기계학습에 기초한 자동분류의 성능 요소에 관한 연구 (An Analytical Study on Performance Factors of Automatic Classification based on Machine Learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제33권2호
    • /
    • pp.33-59
    • /
    • 2016
  • 국내 학술회의 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히 구현이 쉽고 컴퓨터 처리 속도가 빠른 로치오 알고리즘을 사용하여 "한국정보관리학회 학술대회 논문집"의 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 분류기 생성 방법, 학습집합 규모, 가중치부여 기법, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 파라미터(${\beta}$, ${\lambda}$)와 학습집합의 크기(5년 이상)를 적절하게 적용하는 것이 효과적이며, 동등한 성능 수준이라면 보다 단순한 단일 가중치부여 기법을 사용하여 분류의 효율성을 높일 수 있음을 발견하였다. 또한 국내 학술회의 논문의 분류는 특정 논문에 하나 이상의 범주가 부여되는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있으므로, 이러한 환경을 고려하여 주요 성능 요소들의 특성에 기초한 최적의 분류 모델을 개발할 필요가 있다.

연역적 유전자 알고리즘을 이용한 연관 단어 지식베이스의 최적화 (Optimization of Associative Word Knowledge Base using Apriori-Genetic Algorithm)

  • 고수정;최준혁;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권8호
    • /
    • pp.560-569
    • /
    • 2001
  • 지식 기반 정보검색 시스템에서의 질의 확장은 단어간의 의미 관계를 고려한 지식베이스를 필요로 한다. 기존의 단순 마이닝 기법은 사용자의 선호도를 고려하지 않은 채 연관 단어를 추출하므로 재현율은 향상되나 정확도는 저하된다. 본 논문에서는 단어간의 의미 관게를 고려한 연관 단어 중에서 사용자가 선호하는 연관 단어만을 포함하는 정확도가 향상된 최적화된 연관 단어 지식베이스 구축을 위한 방법을 제안한다. 이를 위해 컴퓨터 분야의 웹문서를 8개의 클래스로 분류하고, 각 클래스별 웹문서에서 명사를 추출한다. 추출된 명사를 대상으로 Apriori 알고리즘을 이용하여 연관 단어를 추출하고, 유전자 알고리즘을 이용하여 사용자가 선호하지 않은 연관 단어를 지식베이스의 구축 대상에서 제외시킨다. 본 논문에서 제안된 Apriori 알고리즘과 유전자 알고리즘의 성능을 평가하기 위하여 Apriori 알고리즘은 상호 정보량과 Rocchio 알고리즘과 비교하며, 유전자 알고리즘은 TF.IDF를 이용한 단어 정제 방법과 비교한다.

  • PDF

Evaluation of User Profile Construction Method by Fuzzy Inference

  • Kim, Byeong-Man;Rho, Sun-Ok;Oh, Sang-Yeop;Lee, Hyun-Ah;Kim, Jong-Wan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권3호
    • /
    • pp.175-184
    • /
    • 2008
  • To construct user profiles automatically, an extraction method for representative keywords from a set of documents is needed. In our previous works, we suggested such a method and showed its usefulness. Here, we apply it to the classification problem and observe how much it contributes to performance improvement. The method can be used as a linear document classifier with few modifications. So, we first evaluate its performance for that case. The method is also applicable to some non-linear classification methods such as GIS (Generalized Instance Set). In GIS algorithm, generalized instances are built from training documents by a generalization function and then the K-NN algorithm is applied to them, where the method can be used as a generalization function. For comparative works, two famous linear classification methods, Rocchio and Widrow-Hoff algorithms, are also used. Experimental results show that our method is better than the others for the case that only positive documents are considered, but not when negative documents are considered together.

기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구 (An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.37-62
    • /
    • 2018
  • 문헌정보학 분야의 국내 학술지 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히, "정보관리학회지"에 수록된 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 용어 가중치부여 기법, 학습집합 크기, 분류 알고리즘, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 각 요소를 적절하게 적용하는 것이 효과적이며, 보다 단순한 모델의 사용으로 상당히 좋은 수준의 성능을 도출할 수 있었다. 또한, 국내 학술지 논문의 분류는 특정 논문에 하나 이상의 범주를 할당하는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있다. 따라서 이러한 환경을 고려하여 단순하고 빠른 분류 알고리즘과 소규모의 학습집합을 사용하는 최적의 분류 모델을 제안하였다.