Ranking by Inductive Inference in Collaborative Filtering Systems

협력적 여과 시스템에서 귀납 추리를 이용한 순위 결정

  • 고수정 (인덕대학 컴퓨터소프트웨어)
  • Received : 2010.03.30
  • Accepted : 2010.07.14
  • Published : 2010.09.15

Abstract

Collaborative filtering systems grasp behaviors for a new user and need new information for the user in order to recommend interesting items to the user. For the purpose of acquiring the information the collaborative filtering systems learn behaviors for users based on the previous data and can obtain new information from the results. In this paper, we propose an inductive inference method to obtain new information for users and rank items by using the new information in the proposed method. The proposed method clusters users into groups by learning users through NMF among inductive machine learning methods and selects the group features from the groups by using chi-square. Then, the method classifies a new user into a group by using the bayesian probability model as one of inductive inference methods based on the rating values for the new user and the features of groups. Finally, the method decides the ranks of items by applying the Rocchio algorithm to items with the missing values.

협력적 여과 시스템은 새로운 사용자의 행위를 파악하고 사용자가 흥미로워할 아이템을 추천해주기 위해서 사용자들에 대한 새로운 정보를 필요로 한다. 이러한 정보를 획득하기 위하여 협력적 여과 시스템은 기존 데이터를 기반으로 학습을 하고, 그 결과에 따라 사용자에 대한 새로운 정보를 찾아낼 수 있다. 본 논문에서는 사용자에 대한 새로운 정보를 획득하기 위한 방법으로 귀납적 추리 방법을 제안하고, 추리된 사용자의 정보를 이용하여 아이템의 순위를 결정한다. 제안된 방법에서는 귀납적 기계 학습 방법인 NMF를 이용하여 사용자를 학습시켜서 모든 사용자들을 그룹으로 군집시키고, 각 그룹으로부터 카이제곱을 이용하여 그룹의 특징을 추출한다. 다음으로, 귀납 추리 방법의 하나인 베이지언 확률모델을 이용하여 새로운 사용자가 입력한 평가값과 각 그룹의 특징을 기반으로 사용자를 적합한 그룹으로 분류한다. 마지막으로, 사용자가 결측한 아이템을 대상으로 로치오(Rocchio) 알고리즘을 적용하여 아이템의 순위를 결정한다.

Keywords

Acknowledgement

Supported by : 인덕대학

References

  1. MovieLens collaborative filtering data set, "Http://www.cs.umn.edu/Research/GroupLens/index.html," GROUPLENS RESEARCH PROJECT, 2000.
  2. J. Pessiot, T. Truong, N. Usunier, M. Amini, and P. Gallinari, "Learning to rank for collaborative filtering," Proceedings of the 9th International Conference on Enterprise Information Systems (ICEIS 2007), 2007.
  3. Breese, J. S., Heckerman, D., and Kardie, C., "Empirical analysis of predictive algorithms for collaborative filtering," Proceedings of the fourteenth Conference on Uncertainty I Artificial Intelligence, 1998.
  4. N. N. Liu and Q. Yang, "EigenRank: A Ranking- Oriented Approach to Collaborative Filtering," Proceedings of ACM Conference on Research and Development in Information Retrieval (SIGIR'08), 2008.
  5. Rohini U and V. Varma, "A Novel Approach for Re-Ranking of Search results using Collaborative Filtering," Proceedings of International Conference on Computing: Theory and Applications (ICCTA'07), 2007.
  6. Mitchell, K., Machine learning, McGraw Hill, New York, 1997.
  7. A. Nguyen, N. Denos, and C. Berrut, "Improving New User Recommendations with Rule-based Induction on Cold User Data," Proceedings of the 2007 ACM conference on Recommender systems, 2007
  8. D. Lemire, H. Boley, S. McGrath, and M. Ball, "Collaborative Filtering and Inference Rules for Context-Aware Learning Object Recommendation," International Journal of Interactive Technology and Smart Education, vol.2, no.3, 2005.
  9. A. Eckhardt, "Induction of User Preferences in Semantic Web," Proceedings of WDS'07, 2007.
  10. C. Ding, T. Li, W. Peng, and H. Park, "Orthogonal nonnegative matrix trifactorizations for clustering," Proceedings of SIGKDD, 2006.
  11. D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Advances in Neural Information Processing Systems, 2001.
  12. S. Ko, "A Hybrid Collaborative Filtering Using a Low-Dimensional Linear Model," Journal of KIISE : Software and Applications, vol.36, no.10, Oct. 2009.(in Korean)
  13. Y. Yang and J. O. Pederson, "A comparative study on feature selection in text categorization," Proceedings of the 14th international conference on Machine Learning, 1997.
  14. C. Apte, F. Damerau, and S. M. Weis, "Towards language independent automated learning of text categorization models," Proceeding of the 17th annual international ACM-SIGIR, 1994.
  15. D. D. Lewis, "Navie(bayes) at forty: The independence assumption in information retrieval," European Conference on Machine Learning, 1998.
  16. A. McCallum and K. NIgram, "A comparison of Event Models for Naïve Bayes Test Classification," AAAI'98 workshop on Learning for Text Categorization, 1998.
  17. G. Salton and C. Buckley, "Improving Retrieval Performance by Relevance Feedback," Journal of the American Society for Information Science, vol.41, no.4, 1990.
  18. D. D. Lee and H. S. Seung, "Algorithms for nonnegative matrix factorization," Advances in Neural Information Processing Systems, 2001.
  19. M. Wu, "Collaborative Filtering via Emsembles of Matrix factorizations," Proceedings of KDD Cup and Workshop 2007, 2007.
  20. W. Xu, X. Liu, and Y, Gong, "Document clustering based on non-negative matrix factorization," Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval, 2003.
  21. D. Eck and J. Ryan, http://math.hws.edu/javamath/ryan/ChiSquare.html, Mathbeans Project, 2009.
  22. I. S. Dhillon, S. Mallela, and R. Kumar, "Enhanced Word Clustering for Hierarchical Text Classification," Proceedings of 8th ACM. SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002.
  23. H. Jung, "The Automatic Newspaper Summarization using Information Retrieval Method," Master Thesis, Sogang University, 2007.
  24. Ken Goldberg, http://goldberg.berkeley.edu/jesterdata/, University of California, 2002.
  25. H. Valizadegn, R. Jin, R. Zhang, and J. Mao, "Learning to Rank by Optimizing NDCG Measure," Advance in Neural Information Processing Systems (NIPS 23), 2009.
  26. K. Jarvelin, and J. Kekalainen, "Cumulated Gainbased Evaluation of IR Techniques," ACM. Transactions on Information Systems, vol.20, no.4, 2002.