• Title/Summary/Keyword: Robustness performance

Search Result 1,692, Processing Time 0.025 seconds

ADAPTIVE PREDICTIVE CONTROL USING RHPC FOR ELECTRIC FURNACE

  • Kim, Jin-Hwan;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.22-25
    • /
    • 1995
  • This paper shows adaptive control using RHPC(Receding Horizon Predictive Control) with equality constraint which applied to Electric Furnace. The control strategy includes monotonic weighting (improving transient response) and pre-filtering (enhancing robustness), which is effective on real process. We can observe the performance of RHPC and confirm the practical aspect of RHPC with unmodelled dynamics through the experiment of Electric Furnace. Finally, this paper verifies the feasibility of RHPC to real process.

  • PDF

Properties of Adaptive Filter Using Hadamard Transformation (하다마드 변환을 이용한 적응필터의 특성)

  • 이태훈;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.242-242
    • /
    • 2000
  • Comparing to the conventional adaptive filters using LMS algorithm, the proposed adaptive filters can reduce the amounts of computation and have robustness to variance of characteristics of input signals. LMS algorithm is performed in the domain of Hadamard transform after a reference signal and input signal are transformed by fast Hadamard transformation. As a transformation from time domain to Hadamard transformed domain, the proposed filter not only maintains the performance of estimating an input signal but also greatly reduces the number of multiplication. Moreover, the effect of characteristic changes of input signal is decreased. Computer simulation shows the stability and robustness of the proposed filter.

  • PDF

Robustness Analysis and Improvement on Transformed-key Asymmetric Watermarking System (변환키 비대칭 워터마킹 시스템의 강인성 분석 및 개선)

  • Kim, Nam-Jin;Choi, Doo-Seop;Song, Won-Seok;Choi, Hyuk;Kim, Tae-Jeong
    • Journal of Internet Computing and Services
    • /
    • v.11 no.5
    • /
    • pp.119-126
    • /
    • 2010
  • In this paper, we analyze the robustness of transformed-key asymmetric watermarking system and show its improvement by proposing a new detection method. Based on the assumption that the transformed-key asymmetric watermarking system is under the threat of subtraction attack, we first propose the criterion for the detection performance of the watermarking system and analyze the optimum condition on the system. Next, a new detection method is proposed to improve the detection performance of the system based on the criterion. The proposed improvement makes the system robust to not only subtraction attack but also Wu's attack.

Aerodynamic Simulation of Korea next generation high speed train using open source CFD code (오픈 소스 CFD 코드를 이용한 차세대 고속열차 공력 해석)

  • Kim, B.Y.;Gill, J.H.;Kwon, H.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.327-330
    • /
    • 2011
  • CFD simulation is widely used in various industries, universities and research centers. In Korea most of the researchers use foreign commercial S/W packages especially in industries. But commercial CFD packages have some problems as limit to source code and very high license foe. So from several years ago open source CFD code has been widely spread as an alternative. But in Korea there are a few users of open source code. Insufficiency of performance validation as for accuracy, robustness, convenience and parallel speed-up is important obstacles of open source code. So we tested some validation cases as to incompressible external aerodynamics and internal flaws and now are doing compressible flaws. As the first stage of compressible flow validation, we simulated Korea next generation high speed train(HEMU). It's running condition is 400km/hr and maximum Mach number reaches up to 0.4. With the high speed train we tested accuracy, robustness and parallel performance of open source CFD code OpenFOAM Because there isn't experimental data we compared results with widely used commercial code. When use $1^{st}$ order upwind scheme aerodynamic forces are very similar to commercial code. But using $2^{nd}$ order upwind scheme there was some discrepancy. The reason of the difference is not clear yet. Mesh manipulation, domain decomposition, post-processing and robustness are satisfactory. Paralle lperformance is similar to commercial code.

  • PDF

A Backstepping Control of LSM Drive Systems Using Adaptive Modified Recurrent Laguerre OPNNUO

  • Lin, Chih-Hong
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.598-609
    • /
    • 2016
  • The good control performance of permanent magnet linear synchronous motor (LSM) drive systems is difficult to achieve using linear controllers because of uncertainty effects, such as fictitious forces. A backstepping control system using adaptive modified recurrent Laguerre orthogonal polynomial neural network uncertainty observer (OPNNUO) is proposed to increase the robustness of LSM drive systems. First, a field-oriented mechanism is applied to formulate a dynamic equation for an LSM drive system. Second, a backstepping approach is proposed to control the motion of the LSM drive system. With the proposed backstepping control system, the mover position of the LSM drive achieves good transient control performance and robustness. As the LSM drive system is prone to nonlinear and time-varying uncertainties, an adaptive modified recurrent Laguerre OPNNUO is proposed to estimate lumped uncertainties and thereby enhance the robustness of the LSM drive system. The on-line parameter training methodology of the modified recurrent Laguerre OPNN is based on the Lyapunov stability theorem. Furthermore, two optimal learning rates of the modified recurrent Laguerre OPNN are derived to accelerate parameter convergence. Finally, the effectiveness of the proposed control system is verified by experimental results.

Multi-Objective Optimization of Electromagnetic Device Based on Design Sensitivity Analysis and Reliability Analysis (설계 민감도와 신뢰도 분석에 근거한 전자기기의 다목적 최적화)

  • Ren, Ziyan;Zhang, Dianhai;Park, Chanhyuk;Koh, Chang Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, for constrained optimization problem, one multi-objective optimization algorithm that ensures both performance robustness and constraint feasibility is proposed when uncertainties are involved in design variables. In the proposed algorithm, the gradient index of objective function assisted by design sensitivity with the help of finite element method is applied to evaluate robustness; the reliability calculated by the sensitivity-assisted Monte Carlo simulation method is used to assess the feasibility of constraint function. As a demonstration, the performance and numerical efficiency of the proposed method is investigated through application to the optimal design of TEAM problem 22--a superconducting magnetic energy storage system.

Structural health monitoring for pinching structures via hysteretic mechanics models

  • Rabiepour, Mohammad;Zhou, Cong;Chase, James G.;Rodgers, Geoffrey W.;Xu, Chao
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.245-258
    • /
    • 2022
  • Many Structural Health Monitoring (SHM) methods have been proposed for structural damage diagnosis and prognosis. However, SHM for pinched hysteretic structures can be problematic due to the high level of nonlinearity. The model-free hysteresis loop analysis (HLA) has displayed notable robustness and accuracy in identifying damage for full-scaled and scaled test buildings. In this paper, the performance of HLA is compared with seven other SHM methods in identifying lateral elastic stiffness for a six-story numerical building with highly nonlinear pinching behavior. Two successive earthquakes are employed to compare the accuracy and consistency of methods within and between events. Robustness is assessed across sampling rates 50-1000 Hz in noise-free condition and then assessed with 10% root mean square (RMS) noise added to responses at 250 Hz sampling rate. Results confirm HLA is the most robust method to sampling rate and noise. HLA preserves high accuracy even when the sampling rate drops to 50 Hz, where the performance of other methods deteriorates considerably. In noisy conditions, the maximum absolute estimation error is less than 4% for HLA. The overall results show HLA has high robustness and accuracy for an extremely nonlinear, but realistic case compared to a range of leading and recent model-based and model-free methods.

Review on Quantitative Measures of Robustness for Building Structures Against Disproportionate Collapse

  • Jiang, Jian;Zhang, Qijie;Li, Liulian;Chen, Wei;Ye, Jihong;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.127-154
    • /
    • 2020
  • Disproportionate collapse triggered by local structural failure may cause huge casualties and economic losses, being one of the most critical civil engineering incidents. It is generally recognized that ensuring robustness of a structure, defined as its insensitivity to local failure, is the most acceptable and effective method to arrest disproportionate collapse. To date, the concept of robustness in its definition and quantification is still an issue of controversy. This paper presents a detailed review on about 50 quantitative measures of robustness for building structures, being classified into structural attribute-based and structural performance-based measures (deterministic and probabilistic). The definition of robustness is first described and distinguished from that of collapse resistance, vulnerability and redundancy. The review shows that deterministic measures predominate in quantifying structural robustness by comparing the structural responses of an intact and damaged structure. The attribute-based measures based on structural topology and stiffness are only applicable to elastic state of simple structural forms while the probabilistic measures receive growing interest by accounting for uncertainties in abnormal events, local failure, structural system and failure-induced consequences, which can be used for decision-making tools. There is still a lack of generalized quantifications of robustness, which should be derived based on the definition and design objectives and on the response of a structure to local damage as well as the associated consequences of collapse. Critical issues and recommendations for future design and research on quantification of robustness are provided from the views of column removal scenarios, types of structures, regularity of structural layouts, collapse modes, numerical methods, multiple hazards, degrees of robustness, partial damage of components, acceptable design criteria.

Tuning of LQ-PID Controller-Time Domain Approach (LQ-PID 제어기 동조-시간영역에서의 접근)

  • Yang Ji Hoon;Suh Byung Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • This paper proposes an optimal robust LQ-PID controller design method for the second order systems to satisfy the design specifications in time domain. The tuning parameters of LQ-PID controller are determinated by the relationships between the design parameters of the overshoot and the settling time which are design specifications in time domain, and the weighting factors Q and R in LQR. we can achieve the performance-robustness in time domain as well as the stability-robustness.

Development of an Optimization Technique for Robust Design of Mechanical Structures (기계 구조의 강건 설계를 위한 최적화 기법의 개발)

  • Jeong, Do-Hyeon;Lee, Byeong-Chae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.215-224
    • /
    • 2000
  • In order to reduce the variation effects of uncertainties in the engineering environments, new robust optimization method, which considers the uncertainties in design process, is proposed. Both design variables and system parameters are considered as random variables about their nominal values. To ensure the robustness of performance function, a new objective is set to minimize the variance of that function. Constraint variations are handled by introducing probability constraints. Probability constraints are solved by the advanced first order second moment (AFOSM) method based on the reliability theory. The proposed robust optimization method has an advantage that the second derivatives of the constraints are not required. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.