• Title/Summary/Keyword: Robust motion control

Search Result 276, Processing Time 0.028 seconds

Zero Placement of the Asymmetric S-curve Profile to Minimize the Residual Vibration (잔류진동 저감을 위한 비대칭 S-curve 프로파일의 영점 배치법)

  • Ha, Chang-Wan;Rew, Keun-Ho;Kim, Kyung-Soo;Kim, Soo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.308-313
    • /
    • 2012
  • Robust tuning rules of the motion profile are proposed to minimize the residual vibration. For asymmetric S-curve profile, tuning rules are analytically formulated using Laplace-domain approach. When the system modeling is known exactly, by placing a single zero of the motion profile on the pole of the system, the residual vibration can be perfectly eliminated under undamped system. However, if there are some amounts of the modeling errors, the residual vibration significantly increases. To track this issue, the robust tuning rules against modeling error are discussed. One of the proposed robust tuning rules is placing the multiple zeros of the motion profile on the pole of the system, and the other is placing the zeros of the motion profile around the pole of the system. Thanks to the proposed robust tuning rules, motion profile becomes more robust to modeling errors while minimizing the residual vibration. By simulation, the effectiveness of the proposed robust tuning rules is verified.

A Study on Motion Control and Kinematics Analysis of Articulated Manipulator Attachment for Excavator (포크레인용 다관절 매니퓰레이터 어태치먼트 운동학 해석 및 모션제어)

  • Kim, Hee-Jin;Kim, Sang-Hyun;Jang, Ki-Won;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.807-819
    • /
    • 2019
  • In this paper, it is proposed a new approach to motion control and kinematics analysis of articulated manipulator attachment with five degree of freedom for excavator. Unlike the well-established theory for the control of linear systems, there is little general control theory relatively for a robust control of nonlinear systems. The control technique is essential for providing a stable and robust performance for application of articulated manipulator control. The proposed control algorithm is one of robust control methods based on error informations of the position and velocity error informations using stability analysis of dynamic model. Through simulation test, the proposed control scheme is illustrated to be a efficient control technique for real-time control.

A New Refinement Method for Structure from Stereo Motion (스테레오 연속 영상을 이용한 구조 복원의 정제)

  • 박성기;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.935-940
    • /
    • 2002
  • For robot navigation and visual reconstruction, structure from motion (SFM) is an active issue in computer vision community and its properties arc also becoming well understood. In this paper, when using stereo image sequence and direct method as a tool for SFM, we present a new method for overcoming bas-relief ambiguity. We first show that the direct methods, based on optical flow constraint equation, are also intrinsically exposed to such ambiguity although they introduce robust methods. Therefore, regarding the motion and depth estimation by the robust and direct method as approximated ones. we suggest a method that refines both stereo displacement and motion displacement with sub-pixel accuracy, which is the central process f3r improving its ambiguity. Experiments with real image sequences have been executed and we show that the proposed algorithm has improved the estimation accuracy.

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

Robust Control System Design for Robot Motion Regeneration under Disturbance Input (로봇 모션 재현을 위한 강인한 제어시스템 설계: 외란을 고려한 경우)

  • Dang, Dac-Chi.;Kang, C.N.;Kim, Y.B.
    • Journal of Drive and Control
    • /
    • v.12 no.3
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, the authors propose a method to easily recognize and reproduce the robot motion made by an operator. This method is targets for applications similar to painting and welding, and it is based on a process of that identifies a family of plants, by control design and by conducting an experimental evaluation. In this study, the models and controllers for all joints of 3DOF robot system are obtained individually. And a robust control system for motion control of the individual joints is designed based on $H_{\infty}$ control framework. An experimental comparison is made between the proposed control method and existing PID control method. And the results indicate that the proposed designing method is more efficient and useful than conventional method.

Adaptive robust control for a direct drive SCARA robot manipulator (직접구동 SCARA 로봇 머니퓰레이터에 대한 적응견실제어)

  • Lee, Ji-Hyung;Kang, Chul-Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.140-146
    • /
    • 1995
  • In case the uncertainty existing in a system is assumed to satisfy the matching condition and to be come-bounded. Y. H. Chen proposed an adaptive robust control algorithm which introduced adaptive sheme for a design parameter into robust deterministic controls. In this paper, the adaptive robust control algorithm is applied to the position tracking control of direct drive robots, and simulation and experimental studies are conducted to evaluate control performance.

  • PDF

Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator (슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어)

  • 최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

Design of Robust Motion Controllers with Internal-Loop Compensator (내부루프 보상기를 가지는 강인 동작 제어기의 설계)

  • Kim, Bong-Geun;Jeong, Wan-Gyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1501-1513
    • /
    • 2001
  • Disturbance observer, adaptive robust control, and enhanced internal model control are model based disturbance attenuation methods famous for robust motion controller which can satisfy desired performance and robustness of high-speed/high-accuracy positioning systems. In this paper, these are shown to be the same scheme with different parameterizations. To do this, a generalized framework, called as RIC(robust internal-loop compensator) is proposed and the conventional schemes are analyzed in the RIC framework. Through this analysis, it can be shown that there are inherent similarities between the schemes and advantages of the RIC in the viewpoint of controller design. This is verified through simulations and experiments.

Tracking Performance Improvement of a Magnetic Levitation Based Fine Manipulator (자기부상식 미동 매니퓰레이터의 추종성능 향상)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.58-65
    • /
    • 1999
  • A magnetic levitation system requires a robustness to overcome a dynamic instability due to disturbances. In this paper a robust controller for a magnetically levitated fine manipulator is presented. The proposed controller consists of following two parts: a model reference controller and an $H_{\infty}$ controller. First, the model reference control stabilizes the motion of the manipulator. Then, the motion of the manipulator follows that of the reference model. Second, the $H_{\infty}$ control minimizes errors generated from the model reference control due to noise and disturbance since the $H_{\infty}$ control is a kind of robust control. The experiments of position control and tracking control are carried out by use of the proposed controller under the conditions of free disturbances and forced disturbances. Also, the experiments using PID controller are carried out under the same conditions. The results from above two controllers are compared to investigate the control performances. As the results, it is observed that the proposed controller has similar position accuracy but better tracking performances comparing to the PID controller as well as good disturbance rejection effect due to the robust characteristics of the controller. In conclusion. it is verified that the proposed controller has the simple control structure, the good tracking performances and good disturbance rejection effect due to the robust characteristics of the controller.

  • PDF

Kinematics and Robust PID Trajectory Tracking Control of Parallel Motion Simulator (병렬형 모션 시뮬레이터의 기구학적 해석과 강인 궤적추종 PID 제어기의 설계)

  • Hong, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.161-172
    • /
    • 2007
  • This article suggests an inverse kinematics analysis of a two degree of freedom spatial parallel motion simulator and design methodology of the robust PID controller. The parallel motion simulator consists of a fixed base and a moving frame connected by two serial chains, with each serial chain containing one revolute joint and two passive spherical joint. First, an inverse kinematics problems are solved in order to find the joint variable necessary to bring the end effector to track the desired trajectory. Second, an inverse optimal PID controller is proposed to track trajectories in the face of uncertainty. And the $H_{\infty}$ optimality and robust stability of the closed-loop system is acquired through the PID controller. Finally numerical results show the effectiveness of the PID controller that is designed by square/linear tuning laws.