• Title/Summary/Keyword: Robust manufacturing

Search Result 330, Processing Time 0.021 seconds

Robust Design Methodology for Utility Dependent Design Attributes (효용 종속인 설계 속성의 강건설계)

  • Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.92-99
    • /
    • 2021
  • The ever-growing demand for enhanced competitiveness of engineered systems require designing in quality strategies that can efficiently incorporate multiple design attributes into a system. In a robust design, there must be consideration for any uncontrollable factors that should not be disregarded in the design process. Studies on multi-attribute design challenges usually assume mutual utility independence amongst the design attributes. However, mutual utility independence does not exist in every design situation. In this study, a new robust design methodology that has two utility-dependent attributes are presented. The proposed method was then compared with a traditional robust design that utilizes a wave soldering process design. The results of this case study indicate that the proposed method yields a better solution than the traditional method.

Robust Process Fault Detection System Under Asynchronous Time Series Data Situation (비동기 설비 신호 상황에서의 강건한 공정 이상 감지 시스템 연구)

  • Ko, Jong-Myoung;Choi, Ja-Young;Kim, Chang-Ouk;Sun, Sang-Joon;Lee, Seung-Jun
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.288-297
    • /
    • 2007
  • Success of semiconductor/LCD industry depends on its yield and quality of product. For the purpose, FDC (Fault Detection and Classification) system is used to diagnose fault state in main manufacturing processes by monitoring time series data collected by equipment sensors which represent various conditions of the equipment. The data set is segmented at the start and end of each product lot processing by a trigger event module. However, in practice, segmented sensor data usually have the features of data asynchronization such as different start points, end points, and data lengths. Due to the asynchronization problem, false alarm (type I error) and missed alarm (type II error) occur frequently. In this paper, we propose a robust process fault detection system by integrating a process event detection method and a similarity measuring method based on dynamic time warping algorithm. An experiment shows that the proposed system is able to recognize abnormal condition correctly under the asynchronous data situation.

A robust controller design for rapid thermal processing in semiconductor manufacturing

  • Choi, Byung-Wook;Choi, Seong-Gyu;Kim, Dong-Sung;Park, Jae-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.79-82
    • /
    • 1995
  • The problem of temperature control for rapid thermal processing (RTP) in semiconductor manufacturing is discussed in this paper. Among sub=micron technologies for VLSI devices, reducing the junction depth of doped region is of great importance. This paper investigates existing methods for manufacturing wafers, focusing on the RPT which is considered to be good for formation of shallow junctions and performs the wafer fabrication operation in a single chamber of annealing, oxidation, chemical vapor deposition, etc., within a few minutes. In RTP for semiconductor manufacturing, accurate and uniform control of the wafer temperature is essential. In this paper, a robustr controller is designed using a recently developed optimization technique. The controller designed is then tested via computer simulation and compared with the other results.

  • PDF

Robust Control of Two-axes Precise Stage Using LMI Optimization (LMI 최적화를 이용한 2축 정밀 스테이지의 강인제어)

  • Kim, Yeung-Shik;Park, Heung-Seok;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.845-851
    • /
    • 2013
  • In this paper, a robust optimization approach is applied to the two-axes stage using a piezoelectric actuator for precise motion tracking. Robust control is based on LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) control. Further, an LMI (linear matrix inequality) is used to find the optimal parameter in the loop transfer recovery step, instead of a trial and error method. A decoupler in the shape of FIR filter is added to reduce the coupling effect between the motions of the two axes, and hence, the feedback control loop is designed independently for each axis motion. The experimental result shows that the proposed control scheme can be applied effectively for motion control of the two-axes stage.

QUALITY IMPROVEMENT FOR BRAKE JUDDER USING DESIGN FOR SIX SIGMA WITH RESPONSE SURFACE METHOD AND SIGMA BASED ROBUST DESIGN

  • Kim, H.-S.;Kim, C.-B.;Yim, H.-J.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.193-201
    • /
    • 2003
  • The problem of brake judder is typically caused by defects of quality manufacturing. DFSS (Design for six sigma) is a design process for quality improvement. DFSS will result in more improved but less expensive quality products. This paper presents an implementation of DFSS for quality improvement of the brake judder of heavy-duty trucks. Carrying out 5 steps of DFSS, the major reasons for defects of quality are found. The numerical approximation of the brake system is derived by means of the response surface method. Its quality for brake judder is improved by using the sigma based robust design methodology. Results are compared between the conventional deterministic optimal design and the proposed sigma based robust design. The proposed one shows that manufacturing cost may increase as the quality level increase. The proposed one, however, is more economical in aspect of the overall cost since the probability of failure dramatically goes down.

Robust design of springback in U-channel forming using complex method (콤플렉스법을 이용한 U-채널 성형의 스프링백 강건 설계)

  • Yin, Jeong-Je;Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.117-125
    • /
    • 2013
  • Variations of springback in stamped parts are induced by the uncontrollable noises including the variation of incoming material properties, lubrication and other forming process parameters. Reduction of springback variation is very important during springback compensation processes on stamping dies and assembly processes. To reduce the variation of springback, a robust optimization methodology which uses complex method combined with orthogonal array is proposed. The proposed method is applied to the robust design of U-channel die for the reduction of side wall curl. It is shown that the drawbead and die radius of U-channel draw die can be effectively optimized by the proposed method.

Optimization of Robust Design Model using Data Mining (데이터 바이닝을 이용한 로버스트 설계 모형의 최적화)

  • Jung, Hey-Jin;Koo, Bon-Cheol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.2
    • /
    • pp.99-105
    • /
    • 2007
  • According to the automated manufacturing processes followed by the development of computer manufacturing technologies, products or quality characteristics produced on the processes have measured and recorded automatically. Much amount of data daily produced on the processes may not be efficiently analyzed by current statistical methodologies (i.e., statistical quality control and statistical process control methodologies) because of the dimensionality associated with many input and response variables. Although a number of statistical methods to handle this situation, there is room for improvement. In order to overcome this limitation, we integrated data mining and robust design approach in this research. We find efficiently the significant input variables that connected with the interesting response variables by using the data mining technique. And we find the optimum operating condition of process by using RSM and robust design approach.

Robust Design of Springback in Sheet Metal Forming (박판 성형 공정에서 스프링백의 강건 설계)

  • Kim, Kyung-Mo;Yin, Jeong-Je
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Springback is a very typical dimensional discrepancy phenomenon, which occurs usually on the final stamping parts after the tool loading is removed. Variation of springback leads to amplified variations and problems during assembly of the stamped components, in turn, resulting in quality issues. The variations in the properties of the incoming material and process parameters are the main causes of springback variation. In this research, a robust design methodology which combines orthogonal array based experimental design and design space reduction skim to reduce the springback variation for advanced high strength steel parts in sheet metal forming is suggested. The concept of design space reduction is adapted in the experimental design setup to improve the quality of the obtained solution. The effectiveness of the proposed procedures is illustrated through a robust design of springback in metal forming process of a cross member of auto body.

Determination of Gate Position Considering Robustness in Injection Mold Design (사출금형 설계에서 강건성을 고려한 게이트 위치의 결정)

  • Park, Jong-Cheon;Kim, Kyung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.113-118
    • /
    • 2017
  • In this paper, we propose a design procedure for determining the gate position robust to changes and inherent fluctuations in the process conditions during injection molding. To evaluate the robustness of the gate position, the signal-to-noise ratio is used, and noise conditions are implemented using orthogonal arrays, where the process variables are considered as noise factors and possible process fluctuations are set as the levels of the noise factors. To show the usefulness of the proposed robust design procedure, we apply it to a computer CPU baseplate. As a result, it is shown that a robust gate position can be determined that reduces the average warpage deflection by 2.4% and 1.7%, and the variance by 3.4% and 5.1%, compared to the two initial gate positions.

Backstepping Control-Based Precise Positioning Control Using Robust Friction State Observer and RFNN (강인한 마찰상태관측기와 RFNN을 이용한 백스테핑 제어기반 정밀 위치제어)

  • Yeo, Dae-Yeon;Han, Seong-Ik;Lee, Kwon-Soon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.394-401
    • /
    • 2010
  • In this article, we investigate a robust friction compensation scheme for the purpose of accomplishing precision positioning performance a servo mechanical system with nonlinear dynamic friction. To estimate the friction state and tackle robustness problem for uncertainty, a RFNN and reconstructed error compensator as well as a robust friction state observer are developed. The asymptotic stability of the series of friction compensation methodologies are verified from the Lyapunov's stability theory. Some simulations and experiments on a servo mechanical system were carried out to evaluate the effectiveness of the proposed control scheme.