• 제목/요약/키워드: Robust high frequency

검색결과 229건 처리시간 0.027초

Distributed Channel Allocation Using Kernel Density Estimation in Cognitive Radio Networks

  • Ahmed, M. Ejaz;Kim, Joo Seuk;Mao, Runkun;Song, Ju Bin;Li, Husheng
    • ETRI Journal
    • /
    • 제34권5호
    • /
    • pp.771-774
    • /
    • 2012
  • Typical channel allocation algorithms for secondary users do not include processes to reduce the frequency of switching from one channel to another caused by random interruptions by primary users, which results in high packet drops and delays. In this letter, with the purpose of decreasing the number of switches made between channels, we propose a nonparametric channel allocation algorithm that uses robust kernel density estimation to effectively schedule idle channel resources. Experiment and simulation results demonstrate that the proposed algorithm outperforms both random and parametric channel allocation algorithms in terms of throughput and packet drops.

정현파필터 알고리즘을 이용한 무성방전형 오존발생장치의 설계 (Design of Silent Discharging Ozonizer using Algorithm for Sinusoidal Filter)

  • 엄태욱;이병순
    • 조명전기설비학회논문지
    • /
    • 제28권4호
    • /
    • pp.56-61
    • /
    • 2014
  • In this paper, a control method using Sinusoidal Filter Controller of Silent Discharging Ozonizer is proposed and also the control methode performed robust control against variation of capacitance, command voltage and frequency. As the control system for this methode, Sinusoidal Filter Algorism can be simplified configuration of the power supply by using a low-pass filter. Through simulations and experiment results, the proposed control methode compensates for the high voltage waveform to the ozonizer.

브러시 없는 직류전동기를 위한 연속관성형 외부루프를 갖는 바이너리제어기의 구현 (Implementation of binary position controller with continuous inertial external loop for BLDC motor)

  • 김영조;김영석
    • 대한전기학회논문지
    • /
    • 제45권1호
    • /
    • pp.60-66
    • /
    • 1996
  • Brushless DC(BLDC) motor have been increasingly used in machine tools and robotics applications due to the reliability and the efficiency. In control of BLDC motor, it is important to construct the controller which is robust to parameter variations and external disturbances. Variable structure controller(VSC) has been known as a powerful tool in robust control of time varying systems. In practical systems, however, VSC has a high frequency chattering which deteriorates system performances. In this paper, a binary controller(BC) which takes the form of VSC and MRAC combined is presented to solve this problem. BC consists of the primary loop controller and the external loop controller to change the gain of primary loop controller smoothly. So it can generate the continuous control input and is insensitive to parameter variations in the given domain. To confirm the validity, various investigations of control characteristics for various design parameters in a position control system of BLDC motor are carried out. (author). 11 refs., 18 figs., 1 tab.

  • PDF

Robust Optical Detection Method for the Vibrational Mode of a Tuning Fork Crystal Oscillator

  • Choi, Hyo-Seung;Song, Sang-Hun
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.93-95
    • /
    • 2015
  • We present an optical detection method for the fundamental vibrational mode of a tuning fork crystal oscillator in air. A focused He/Ne laser beam is directed onto the edge of one vibrating tine of the tuning fork; its vibrating motion chops the incoming laser beam and modulates the intensity. The beam with modulated intensity is then detected and converted to an electrical signal by a high-speed photo-detector. This electrical signal is a sinusoid at the resonant frequency of the tuning fork vibration, which is 32.76 kHz. Our scheme is robust enough that the sinusoidal signal is detectable at up to $40^{\circ}$ of rotation of the tuning fork.

전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용 (Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

화자 확인을 위한 다중대역에 기반한 주성분 분석 공분산 모델 (PCA Covariance Model Based on Multiband for Speaker Verification)

  • 최민정;이윤정;서창우
    • 음성과학
    • /
    • 제14권2호
    • /
    • pp.127-135
    • /
    • 2007
  • Feature vectors of speech are generally extracted from whole frequency domain. The inherent character of a speaker is located in the low band or high band frequency. However, if the speech is corrupted by narrowband noise with concentrated energy, speaker verification performance is reduced as the individual characteristic is removed. In this paper, we propose a PCA Covariance Model based on the multiband to extract the robust feature vectors against the narrowband noise. First, we divide the overall frequency band into several subbands. Second, the correlation of feature vectors extracted independently from each subband is removed by PCA. The distance obtained from each subband has different distribution. To normalize against the different distribution, we moved the value into the normalized distribution through the mapping function. Finally, the represented value applying the weighting function is used for speaker verification. In the experiments, the proposed method shows better performance of the speaker verification and reduces the computation.

  • PDF

불확실성을 포함한 차량 조향장치의 강인 이산시간 슬라이딩 모드 제어 (Robust Discrete-Time Sliding Mode Control of Vehicle Steering System with Uncertainty)

  • 김한메;김두형;박경택
    • 제어로봇시스템학회논문지
    • /
    • 제18권4호
    • /
    • pp.295-301
    • /
    • 2012
  • This paper deals with the design of robust DSMC (Discrete-Time Sliding Mode Control) scheme in order to overcome system uncertainty in steering system with mechanically joined structure. The proposed control scheme is one of robust control schemes based on system dynamics. Therefore, system dynamics required is not obtained from physical law but SCM (Signal Compression Method) through experiment in order to avoid complicate mathematical development and save time. However, SCM has a shortcoming that is the limitation of with $2^{nd}$ order linear model which does not include the dynamic of high-frequency band. Thus, considering system uncertainty, DSMC is designed. In addition, to reduce the chattering problem of DSMC, DSMC is derived from the reaching law and the Lyapunov stability condition. It is found that the proposed control scheme has robustness in spite of the perturbation of system uncertainty through computer simulation.

Robust Design of Main Control Valve for Hydraulic Pile Hammer Flexible Control System

  • Guo, Yong;Hu, Jun Ping;Zhang, Long Yan
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2016
  • The flexible control system for hydraulic pile hammer using main control valve is present to the requirement of rapidly reversing with high frequency. To ensure the working reliability of hydraulic pile hammer, the reversing performance of the main control valve should commutate robustness to various interfere factors. Through simulation model built in Simulink/Stateflow and experiment, the effects of relative parameters to reverse performance of main control are analyzed and the main interfere factors for reversing performance are acquired. Treating reverse required time as design objects, some structure parameters as control factors, control pressure, input flow and gaps between spool and valve body as interfere factors, the robust design of the main control valve is done. The combination of factors with the strongest anti-jamming capability is acquired which ensured the reliability and anti-jamming capability of the main control valve. It also provides guidance on design and application of the main control valve used in large flow control with interferes.

가변구조 제어계의 채터링 현상의 제거 및 연속입력을 얻기 위한 입력법칙의 개선 (An Improvement of Continuous Control Law for Removing Chattering Phenomenon of VSC Systems)

  • 김중완;이만형
    • 대한전기학회논문지
    • /
    • 제38권1호
    • /
    • pp.60-67
    • /
    • 1989
  • In this paper, a methodology is developed to remove the high frequency chattering phenomenon which is the common drawbacks of variable structure control(VSC) system. An improved control law is proposed to achieve continuous control input whose terms are continuous functions during the control process under switching plane, which removes chattering and is robust as well. The methodology developed in this paper is applied to attitude control for spacecraft and the simulated results are compared with those of typical VSC methodology.

  • PDF

5-GHz Delay-Locked Loop Using Relative Comparison Quadrature Phase Detector

  • Wang, Sung-Ho;Kim, Jung-Tae;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제2권2호
    • /
    • pp.102-105
    • /
    • 2004
  • A Quadrature phase detector for high-speed delay-locked loop is introduced. The proposed Quadrature phase detector is composed of two nor gates and it determines if the phase difference of two input clocks is 90 degrees or not. The delay locked loop circuit including the Quadrature phase detector is fabricated in a 0.18 um Standard CMOS process and it operates at 5 GHz frequency. The phase error of the delay-locked loop is maximum 2 degrees and the circuits are robust with voltage, temperature variations.