• Title/Summary/Keyword: Robust controller

Search Result 2,057, Processing Time 0.023 seconds

A Robust Controller Design for the Position Control of a Spring-Mass System (탄성-질량시스템의 위치제어를 위한 강건 제어기 설계)

  • 박종우;이상철
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.41-49
    • /
    • 1999
  • In this paper, we design a controller using the $\mu$-synthesis method and apply it for the spring-mass system with noncollocated sensors and actuators. We assume that the values of the spring stiffness and load mass of the plant are uncertain. The plant is modeled with parametric uncertainty by using the state space equation, especially the descriptor form. The $H_\infty$ controller designed by the $\mu$-synthesis method is compared with the standard $H_\infty$ controller To compare performances of two $H_\infty$ controllers, it is assumed that both controllers were designed with same weighting functions except that the $\mu$-synthesis controller has structured uncertainties. By compared with the standard $H_\infty$ controller, we show that the designed controller has satisfactory robust performance as well as robust stability by simulations and experiments.

  • PDF

$H_\infty$ Depth Controller Design for Underwater Vehicles (수중운동체의 $H_\infty$ 심도제어기 설계)

  • 이만형;정금영;김인수;주효남;양승윤
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.5
    • /
    • pp.345-355
    • /
    • 2000
  • In this paper, the depth controller of an underwater vehicle based on an $H_\infty$ servo control is designed for the depth keeping of the underwater vehicle under wave disturbances. The depth controller is designed in the form of the $H_\infty$ servo controller, which has robust tracking property, and an $H_\infty$ servo problem is considered for the $H_\infty$ servo controller design. In order to solve the $H_\infty$ servo problem for the underwater vehicle, this problem is modified as an $H_\infty$ control problem for the generalized plant that includes a reference input mode, and a suboptimal solution that satisfies a given performance criteria is calculated with the LMI (Linear Matrix Inequality) approach. The $H_\infty$ servo controller is designed to have robust stability about the perturbation of the parameters of the underwater vehicle and the robust tracking property of the underwater vehicle depth under wave force and moment disturbances. The performance, robustness about the uncertainties, and depth tracking property, of the designed depth controller is evaluated by computer simulation, and finally these simulation results show the usefulness and applicability of the proposed $H_\infty$ depth control system.

  • PDF

Optimum Tuning of PID-PD Controller considering Robust Stability and Sensor Noise Insensitivity (센서 잡음 저감도 및 안정-강인성을 고려한 PID-PD 제어기의 최적 동조)

  • Kim, Chang-Hyun;Lim, Dong-Kyun;Suh, Byung-Suhl
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.19-24
    • /
    • 2007
  • In this paper, we propose a tuning method of PID-PD controller to satisfy design specifications in frequency domain as well as time domain. The proposed tuning method of PID-PD controller consists of the convex set of PID and PI-PD controller. PID-PD controller controls the closed-loop response to be located between the step responses, and Bode magnitudes of closed-loop transfer functions controlled by PID and PI-PD controller. The controller is designed by the optimum tuning method to minimize the proposed specific cost function subject to sensor noise insensitivity and robust stability. Its effectiveness is examined by the case study and analysis.

A Design on Robust Two-Degree-of-Freedom Multivariable Boiler-Turbine System (강인한 2자유도 다변수 보일러-터빈 시스템의 설계)

  • Hwang, C.S.;Kim, D.W.;Jung, H.S.;Lee, D.Y.;Cho, K.Y.;Nam, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.670-672
    • /
    • 1995
  • This paper deals with the robust two-degree-of-freedom multivariable control system using $H_{2}/H{\infty}$optimization method which can achieve the robust stability and the robust performance, simultaneously. The feedback controller can obtain the robust stability property. The feedforward controller can obtain the robust performance property under modelling error. The robust two-degree-of-freedom multivariable control system is applied to the nonlinear multivariable boiler-turbine system. The validity of the proposed method is verified though being compared with LQG/LTR design method.

  • PDF

A Robust Recursive Control Approach to Nonlinear Missile Autopilot (강인 반복 제어를 이용한 비선영 유도탄 자동조종장치)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.1031-1035
    • /
    • 2001
  • In this paper, a robust recursive control approach for nonlinear system, which is based on Lyapunov stability, is proposed. The proposed method can apply to extended systems including cascaded systems and the stability is guaranteed in the sense of Lyapunov. The recursive design procedure so called “robust recursive control approach” is used to find a stabilizing robust controller and simultaneously estimate the uncertainty parameters. First, a nonlinear model with uncertainties whose bounds are unknown is derived. Then, unknown bounds of uncertainties are estimated. By using these estimates, the stabilizing robust controller is updated at each step. This approach is applied to the pitch autopilot design of a nonlinear missile system and simulation results indicate good performance.

  • PDF

Robust Tracking Control of Robotic Manipulators Using Fuzzy-Sliding Modes (퍼지-슬라이딩모드를 이용한 로봇의 강건추적제어)

  • 김정식;최승복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2088-2100
    • /
    • 1994
  • Considerable attention has been given to controller designs that utilize the variable structure system theory in order to achieve robust tracking performance of robotic manipulators subjected to parameter variations and extraneous disturbances. However, the theory has not had wide spread acceptance in practical control engineering community due mainly to the worry of chattering which is inherently ever-existing in the variable structure system. This paper presents a novel type of fuzzy-sliding mode controller to alleviate the chattering problem. A sliding mode controller for robust robot control is firstly synthesized with an assumption that the imposed system uncertainties satisfy matching conditions so that certain deterministic performances can parameters and control rules are obtained from a relation between predetermined sliding surfaces and representative points in the error state space. A two degree-of-freedom robotic manipulator subjected to a variable payload and a torque disturbance is considered in order to demonstrate superior tracking performance accrued from the proposed methodology.

Robust Velocity Control for Inverter-Driven Hydraulic Elevators Using $DGKF/\mu$ Approach ($DGKF/\mu$ 기법을 이용한 인버터구동 유압 엘리베이터의 강인한 속도 제어)

  • Kang, Ki-Ho;Kim, Kyoung-Seo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.217-227
    • /
    • 2000
  • Although inverter-driven hydraulic elevators(HEL's) have advantages over traditional valve-controlled HEL's energy efficiency and performance they need robustness in performance and stability to accomodate nonlinearities big parametric variations and resonances in mechanical-hydraulic inner system. In this paper a robust controller based on DGKF/$\mu$ mixed approach is applied to a HEL system with carring capacity of 24 persons for Incheon International Airport. The results of a test tower(T/T) has shown good ro-bustness in performance and stability of the proposed controller thereby proving a feasibility of this robust controller-based approach for other HEL problems.

  • PDF

Robust Velocity Control for Inverter-Driven Hydraulic Elevators Using DGKF/μ Approach (DGKF/μ 기법을 이용한 인버터구동 유압 엘리베이터의 강인한 속도 제어)

  • 강기호;김경서
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.271-271
    • /
    • 2000
  • Although inverter-driven hydraulic elevators(HEL's) have advantages over traditional valve-controlled HEL's energy efficiency and performance they need robustness in performance and stability to accomodate nonlinearities big parametric variations and resonances in mechanical-hydraulic inner system. In this paper a robust controller based on DGKF/μ mixed approach is applied to a HEL system with carring capacity of 24 persons for Incheon International Airport. The results of a test tower(T/T) has shown good ro-bustness in performance and stability of the proposed controller thereby proving a feasibility of this robust controller-based approach for other HEL problems.

Design of Current Controller for an Induction Motor using Robust Stability Theory (강인안정도 기법을 이용한 유도전동기의 전류 제어기 설계)

  • 박태식;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.165-172
    • /
    • 2003
  • In this paper, the new robust current control scheme is proposed for an Induction motor. The proposed design scheme of current controller tan obtain a specified stability margin through electrical parameter variation by using Kharitonov robust stability theory. The characteristics of the proposed design scheme are compared with those of a conventional scheme by computer simulation and its effectiveness and usefulness is verified by experiments on the 0.75kW induction motor drive.

Development of Steering Control System for UCT (Unmanned Container Transporter) Using Robust Control (무인 차량의 강인한 조향제어 시스템 개발에 관한 연구)

  • Jeong, Seung-Gwon;Kim, In-Su;Kim, Chang-Seop;Choe, Ju-Yong;Yun, Gang-Seop;Lee, Man-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.178-186
    • /
    • 2002
  • In this study, the steering control system for UCT (unmanned container transporter) was developed using MR (Magnetoresistive) sensors. The MR and magnet sensors are used for the lane detecting system. The robust control theory is used for the design of the steering controller to reduce the uncertainties of the road. The performance of the robust steering controller is compared in simulations and tests using the existing PD controller of the UCT.