• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.036 seconds

Optimal Current Detect MPPT Control of PV System for Robust with Environment Changing (환경변화에 강인한 태양광 발전의 최적전류 MPPT 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.47-58
    • /
    • 2011
  • This paper proposes the optimal current detect(OCD) maximum power point tracking(MPPT) control of photovoltaic(PV) system for robust with environment changing. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and temperature. Conventional MPPT control methods are tracked the maximum power point by constant incremental value. So these methods are slow the response speed and generated the vibration in steady state and cannot track the MPP in environment condition changing. And power loss is generated because of the self-excitation vibration in MPP region. To solve this problem, this paper proposes the novel control algorithm. Proposed algorithm is detected the optimal current in two control region using the output power and current curve. Detected current is used the converter switching for tracking the MPP. Proposed algorithm is compared output power error to conventional algorithm with radiation and temperature changing. In addition, the validity of the algorithm is proved through the output error response characteristics.

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

Robust Filtering Algorithm for Improvement of Air Navigation System (항행시스템 성능향상을 위한 강인한 필터링 알고리즘)

  • Cho, Taehwan;Kim, Jinhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

Performance Enhancement for Speaker Verification Using Incremental Robust Adaptation in GMM (가무시안 혼합모델에서 점진적 강인적응을 통한 화자확인 성능개선)

  • Kim, Eun-Young;Seo, Chang-Woo;Lim, Yong-Hwan;Jeon, Seong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.268-272
    • /
    • 2009
  • In this paper, we propose a Gaussian Mixture Model (GMM) based incremental robust adaptation with a forgetting factor for the speaker verification. Speaker recognition system uses a speaker model adaptation method with small amounts of data in order to obtain a good performance. However, a conventional adaptation method has vulnerable to the outlier from the irregular utterance variations and the presence noise, which results in inaccurate speaker model. As time goes by, a rate in which new data are adapted to a model is reduced. The proposed algorithm uses an incremental robust adaptation in order to reduce effect of outlier and use forgetting factor in order to maintain adaptive rate of new data on GMM based speaker model. The incremental robust adaptation uses a method which registers small amount of data in a speaker recognition model and adapts a model to new data to be tested. Experimental results from the data set gathered over seven months show that the proposed algorithm is robust against outliers and maintains adaptive rate of new data.

A New Approach to System Identification Using Hybrid Genetic Algorithm

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.6-107
    • /
    • 2001
  • Genetic alogorithm(GA) is a well-known global optimization algorithm. However, as the searching bounds grow wider., performance of local optimization deteriorates. In this paper, we propose a hybrid algorithm which integrates the gradient algorithm and GA so as to reinforce the performance of local optimization. We apply this algorithm to the system identification of second order RLC circuit. Identification results show that the proposed algorithm gets the better and robust performance to find the exact values of RLC elements.

  • PDF

Dual-mode Blind Equalization Algorithm for QAM Demodulation (QAM 복조용 이중 모드 채널 등화 알고리즘)

  • Ryu, Seok-Kyu;Hwang, Hu-Mor;Song, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3209-3211
    • /
    • 1999
  • We propose a robust Dual-Mode blind equalization algorithm based on Quadrant-partitioned Constant Modulus Algorithm (QCMA) and Modified Constant Modulus Algorithm(MCMA) for QAM demodulation and its performance evaluated. The proposed algorithm show that the stability in setting 2d range and the faster convergence accomplished to conventional Dual-Mode algorithm.

  • PDF

Adaptive Band Selection for Robust Speech Detection In Noisy Environments

  • Ji Mikyong;Suh Youngjoo;Kim Hoirin
    • MALSORI
    • /
    • no.50
    • /
    • pp.85-97
    • /
    • 2004
  • One of the important problems in speech recognition is to accurately detect the existence of speech in adverse environments. The speech detection problem becomes severer when recognition systems are used over the telephone network, especially in a wireless network and a noisy environment. In this paper, we propose a robust speech detection algorithm, which detects speech boundaries accurately by selecting useful bands adaptively to noisy environments. The bands where noises are mainly distributed, so called, noise-centric bands are introduced. In this paper, we compare two different speech detection algorithms with the proposed algorithm, and evaluate them on noisy environments. The experimental results show the excellence of the proposed speech detection algorithm.

  • PDF

Robust Localization Algorithm for Mobile Robots in a Dynamic Environment with an Incomplete Map (동적 환경에서 불완전한 지도를 이용한 이동로봇의 강인한 위치인식 알고리즘의 개발)

  • Lee, Jung-Suk;Chung, Wan Kyun;Nam, Sang Yep
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.109-118
    • /
    • 2008
  • We present a robust localization algorithm using particle filter for mobile robots in a dynamic environment. It is difficult to describe moving obstacles like people or other robots on the map and the environment is changed after mapping. A mobile robot cannot estimate its pose robustly with this incomplete map because sensor observations are corrupted by un-modeled obstacles. The proposed algorithms provide robustness in such a dynamic environment by suppressing the effect of corrupted sensor observations with a selective update or a sampling from non-corrupted window. A selective update method makes some particles keep track of the robot, not affected by the corrupted observation. In a sampling from non-corrupted window method, particles are always sampled from several particle sets which use only non-corrupted observation. The robustness of proposed algorithm is validated with experiments and simulations.

  • PDF

Extraction of Facial Region Using Fuzzy Color Filter (퍼지 색상 필터를 이용한 얼굴 영역 추출)

  • Kim, M.H.;Park, J.B.;Jung, K.H.;Joo, Y.H.;Lee, J.;Cho, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.147-149
    • /
    • 2004
  • There are no authentic solutions in a face region extraction problem though it is an important part of pattern recognition and has diverse application fields. It is not easy to develop the facial region extraction algorithm because the facial image is very sensitive according to age, sex, and illumination. In this paper, to solve these difficulties, a fuzzy color filer based on the facial region extraction algorithm is proposed. The fuzzy color filter makes the robust facial region extraction enable by modeling the skin color. Especially, it is robust in facial region extraction with various illuminations. In addition, to identify the fuzzy color filter, a linear matrix inequality(LMI) optimization method is used. Finally, the simulation result is given to confirm the superiority of the proposed algorithm.

  • PDF

The Hybrid Knowledge Integration Using the Fuzzy Genetic Algorithm

  • Kim, Myoung-Jong;Ingoo Han;Lee, Kun-Chang
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.145-154
    • /
    • 1999
  • An intelligent system embedded with multiple sources of knowledge may provide more robust intelligence with highly ill structured problems than the system with a single source of knowledge. This paper proposes the hybrid knowledge integration mechanism that yields the cooperated knowledge by integrating expert, user, and machine knowledge within the fuzzy logic-driven framework, and then refines it with a genetic algorithm (GA) to enhance the reasoning performance. The proposed knowledge integration mechanism is applied for the prediction of Korea stock price index (KOSPI). Empirical results show that the proposed mechanism can make an intelligent system with the more adaptable and robust intelligence.

  • PDF