DOI QR코드

DOI QR Code

Robust Filtering Algorithm for Improvement of Air Navigation System

항행시스템 성능향상을 위한 강인한 필터링 알고리즘

  • Cho, Taehwan (Department of Electronics Engineering, Republic of Korea Air Force Academy) ;
  • Kim, Jinhyuk (Department of Electronics Engineering, Inha University) ;
  • Choi, Sangbang (Department of Electronics Engineering, Inha University)
  • Received : 2015.04.14
  • Accepted : 2015.04.24
  • Published : 2015.04.30

Abstract

Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

CNS/ATM(communication navigation surveillance / air traffic management)의 감시 분야에서는 ADS-B(automatic dependent surveillance - broadcast) 시스템, MLAT(multilateration) 시스템, WAM(wide area multilateration) 시스템이 구축되고 있다. ADS-B, MLAT, WAM 시스템의 항공기 추적 성능이 기존의 레이더에 비해 매우 우수하지만 여전히 오차를 포함하고 있다. 따라서 본 논문에서는 차세대 항행시스템의 오차를 줄이고 항공기 추적 성능을 높일 수 있는 필터링 알고리즘을 제안하였다. 필터링 알고리즘 중에서 가장 유용하다고 알려진 IMM(interacting multiple model) 필터를 개선한 Robust IMM 필터를 사용하였으며, ADS-B, MLAT, WAM 시스템 등의 차세대 항공기 추적 시스템에 적용하였다. Robust IMM 필터는 항공기 추적성능을 향상시킬 뿐만 아니라 항공기 위치 데이터가 손실되더라도 필터에서 계산한 추정값을 이용하여 지속적인 위치 추적을 가능하게 한다. 필터링 알고리즘을 차세대 항행시스템에 적용했을 때 평균 19.21%의 성능향상이 있었다.

Keywords

References

  1. CNS/ATM ground station and service status reports, SUR.ET1.ST05. 2000-STD-16-01; European air traffic management, Brussels, Belgium, 2009.
  2. SESAR consortium, The ATM target Concept, SESAR definition phase deliverable 3, 2007.
  3. ERA, Proven multilateration and ADS-B surveillance solutions, 2011.
  4. H. S. Jun, D. M. Kim, and C. H. Yeom "Analysis of CNS/ATM technology trend," Current Industrial and Technological Trends in Aerospace, Vol. 8, No. 2, pp. 113-123, 2010.
  5. T. L. Song, "Filtering theory," Journal of Institute of Control, Robotics and Systems, Vol. 9, No. 2, pp. 413-419, 2003.
  6. H. A. P. Blom, and Y. Bar-Shalom, "The interacting multiple model algorithm for systems with markovian switching coefficients," IEEE Transactions on Automatic Control, Vol. 33, pp. 780-783, 1988. https://doi.org/10.1109/9.1299
  7. T. H. Cho, K. S. Kim, W. O. Yoon, and S. B. Choi, "The improvement of aircraft position information with the unscented Kalman filter," International Journal of Database Theory and Application, Vol. 5, No. 2, pp. 75-82, 2012.
  8. T. H. Cho, I. S. Song, E. M. Jang, W.O. Yoon, and S. B. Choi, "A Study on the improvement of the multilateration data by emplying an IMM filter," The Journal of Korea Navigation Institute, Vol. 16, No. 4, pp. 578-585, 2012. https://doi.org/10.12673/jkoni.2012.16.4.578
  9. Radio technical commission for aeronautics, minimum aviation system performance standards (MASPS) for automatic dependent surveillance-broadcast (ADS-B); RTCA/DO 242A, 2002.
  10. SRA International, Multilateration & ADS-B Executive Reference Guide, 2009.
  11. P. Klaus, A. Mathias, and R. Heidger, "Investigation of measurement characteristics of MLAT/WAM and ADS-B," in Proceedings of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles(TIWDC/ESAV), Capri: Italy, pp. 203-206, 2011.
  12. Eurocontrol, Generic safety assessment for ATC surveillance using wide area multilateration, 2008.
  13. J. M. Abbud, G. Miguel, and J. Besada, "Correction of systematic errors in wide area multilateration," in Proceedings of the 2011 Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles(TIWDC/ESAV), Capri: Italy, pp. 173-178, 2011.
  14. J. Zhang, W. Liu, and Y. Zhu, "Study of ADS-B data evaluation," Chinese Journal of Aeronautics, Vol. 24, pp. 461-466, 2011. https://doi.org/10.1016/S1000-9361(11)60053-8
  15. C. H. Kim, J. H. Han, and J. Y. Kang, "Air surveillance using mode-s multilateration," Journal of the Korean Society for Aviation and Aeronautics, Vol. 18, No. 3, pp. 9-20, 2010.

Cited by

  1. ADS-B 서버 시스템의 설계 및 구현 vol.19, pp.3, 2015, https://doi.org/10.12673/jant.2015.19.3.182
  2. 정보융합 기법을 활용한 ADS-B 성능 개선 vol.19, pp.5, 2015, https://doi.org/10.12673/jant.2015.19.5.345
  3. An Efficient Information Fusion Method for Air Surveillance Systems vol.20, pp.3, 2015, https://doi.org/10.12673/jant.2016.20.3.203