• Title/Summary/Keyword: Robust algorithm

Search Result 2,732, Processing Time 0.03 seconds

Receding Horizon Control of Nonlinear Systems: Robustness and Effects of Disturbance (비선형 시스템에 대한 동적 구간 제어법:강인성 및 외란의 영향)

  • 양현석
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.1-11
    • /
    • 1996
  • In this paper, a robust receding horizon control algorithm, which can be employed for a wide class of nonlinear systems with control and state constraints, modeling errors, and disturbances, is considered. In a neighborhood of the origin, a linear feedback controlelr for the linearized system is applied. Outside this neighborhood, a receding horizon control is applied. Robust stability is proved considering the time taken to solve an optimal control problem so that the proposed algorithm can be applied as an on-line controller.

  • PDF

Robust TCP Congestion Algorithm over Lossy Wireless Links (무선링크 에러에 강인한 TCP 혼잡 알고리즘)

  • 박홍성;전선국;윤건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5B
    • /
    • pp.427-434
    • /
    • 2003
  • This paper suggests an improved TCP congestion algorithm, which is more robust to lossy wireless environment than other algorithms such as TCP-Reno. The suggested algorithm decides on the size of a congestion window depending on both PER (Packet Error Rate) and its state, which is one of fast recovery state and slow start state. Some simulations are given to validate the suggested algorithm and the algorithm is compared with other TCP congestion algorithm from the point of view of performance measures such as a congestion window and throughput. The suggested algorithm has better throughput than other algorithm over wireless links with high PER and similar throughput to others over wireless links with low BER.

A Robust Algorithm for Tracking Non-rigid Objects

  • Kim, Jong-Ryul;Na, Hyun-Tae;Moon, Young-Shik
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.141-144
    • /
    • 2002
  • In this paper, we propose a new object tracking algorithm using deformed template and Level-Set theory, which is robust against background variation, object flexibility and occlusion. The proposed tracking algorithm consists of two steps. The first step is an estimation of object shape and location, on the assumption that the transformation of object can be approximately modeled by the affine transform. The second step is a refinement of the object shape to fit into the real object accurately, by using the potential energy map and the modified Level Set speed function. Experimental results show that the proposed algorithm can track non-rigid objects with large variation in the backgrounds.

  • PDF

Robust Real-time Detection of Abandoned Objects using a Dual Background Model

  • Park, Hyeseung;Park, Seungchul;Joo, Youngbok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.771-788
    • /
    • 2020
  • Detection of abandoned objects for smart video surveillance should be robust and accurate in various situations with low computational costs. This paper presents a new algorithm for abandoned object detection based on the dual background model. Through the template registration of a candidate stationary object and presence authentication methods presented in this paper, we can handle some complex cases such as occlusions, illumination changes, long-term abandonment, and owner's re-attendance as well as general detection of abandoned objects. The proposed algorithm also analyzes video frames at specific intervals rather than consecutive video frames to reduce the computational overhead. For performance evaluation, we experimented with the algorithm using the well-known PETS2006, ABODA datasets, and our video dataset in a live streaming environment, which shows that the proposed algorithm works well in various situations.

NUMERICAL SIMULATION OF PLASTIC FLOW BY FINITE ELEMENT LIMIT ANALYSIS

  • Hoon-Huh;Yang, Wei-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.159-176
    • /
    • 1992
  • Limit analysis has been rendered versatile in many problems such as structural problems and metal forming problems. In metal forming analysis, a slip-line method and an upper bound method approach to limit solutions is considered as the most challenging areas. In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem, and a combined smoothing and successive approximation in addition to a general procedure for finite element analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening materials by the nature of the limit formulation, which is also robust with numerically stable convergence and highly efficient computing time.

  • PDF

SLAM Aided GPS/INS/Vision Navigation System for Helicopter (SLAM 기반 GPS/INS/영상센서를 결합한 헬리콥터 항법시스템의 구성)

  • Kim, Jae-Hyung;Lyou, Joon;Kwak, Hwy-Kuen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.745-751
    • /
    • 2008
  • This paper presents a framework for GPS/INS/Vision based navigation system of helicopters. GPS/INS coupled algorithm has weak points such as GPS blockage and jamming, while the helicopter is a speedy and high dynamical vehicle amenable to lose the GPS signal. In case of the vision sensor, it is not affected by signal jamming and also navigation error is not accumulated. So, we have implemented an GPS/INS/Vision aided navigation system providing the robust localization suitable for helicopters operating in various environments. The core algorithm is the vision based simultaneous localization and mapping (SLAM) technique. For the verification of the SLAM algorithm, we performed flight tests. From the tests, we confirm the developed system is robust enough under the GPS blockage. The system design, software algorithm, and flight test results are described.

Adaptive MIMO Switching Algorithm Robust for Channel Estimation Error (채널추정 오차에 강인한 적응형 MIMO 신호처리 기법)

  • Choi, Joon-Sung;Eun, Chang-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.51-57
    • /
    • 2010
  • In this paper, we propose a new adaptive MIMO switching algorithm that provides the optimal trade-off between throughput and reliability of data in MIMO system. The proposed algorithm is based on the variable packet error predictor which is robust for channel estimation error, and we show that our algorithm has a better spectrum efficiency than the conventional MIMO switching techniques about 8 percent point.

Fuzzy-Sliding Mode Control for SCARA Robot Based on DSP (DSP를 이용한 스카라 로봇의 퍼지-슬라이딩 모드 제어)

  • Go, Seok-Jo;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • This paper shows that the proposed fuzzy-sliding mode control algorithm for a SCARA robot could reduce the chattering due to sliding mode control and is robust against a change of payload and parameter uncertainties. That is, the chattering can be reduced by changing control input for compensating disturbances into a control input by fuzzy rules within a pre-determined dead zone. The experimental results show that the chattering can be reduced more effectively by the fuzzy-sliding mode control algorithm than the sliding mode control with two dead zones. It is proved experimentally that the proposed control algorithm is robust to a change of payload. The proposed control algorithm is implemented to the SCARA robot using a DSP(board) for high speed calculations.

  • PDF

Design of a Fuzzy-Sliding Mode Controller for a SCARA Robot to Reduce Chattering

  • Go, Seok-Jo;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.339-350
    • /
    • 2001
  • To overcome problems in tracking error related to the unmodeled dynamics in the high speed operation of industrial robots, many researchers have used sliding mode control, which is robust against parameter variations and payload changes. However, these algorithms cannot reduce the inherent chattering which is caused by excessive switching inputs around the sliding surface. This study proposes a fuzzy-sliding mode control algorithm to reduce the chattering of the sliding mode control by fuzzy rules within a pre-determined dead zone. Trajectory tracking simulations and experiments show that chattering can be reduced prominently by the fuzzy-sliding mode control algorithm compared to a sliding mode control with two dead zones, and the proposed control algorithm is robust to changes in payload. The proposed control algorithm is implemented to the SCARA (selected compliance articulated robot assembly) robot using a DSP (digital signal processor) for high speed calculations.

  • PDF

A Multiple Features Video Copy Detection Algorithm Based on a SURF Descriptor

  • Hou, Yanyan;Wang, Xiuzhen;Liu, Sanrong
    • Journal of Information Processing Systems
    • /
    • v.12 no.3
    • /
    • pp.502-510
    • /
    • 2016
  • Considering video copy transform diversity, a multi-feature video copy detection algorithm based on a Speeded-Up Robust Features (SURF) local descriptor is proposed in this paper. Video copy coarse detection is done by an ordinal measure (OM) algorithm after the video is preprocessed. If the matching result is greater than the specified threshold, the video copy fine detection is done based on a SURF descriptor and a box filter is used to extract integral video. In order to improve video copy detection speed, the Hessian matrix trace of the SURF descriptor is used to pre-match, and dimension reduction is done to the traditional SURF feature vector for video matching. Our experimental results indicate that video copy detection precision and recall are greatly improved compared with traditional algorithms, and that our proposed multiple features algorithm has good robustness and discrimination accuracy, as it demonstrated that video detection speed was also improved.