• Title/Summary/Keyword: Robust Shortest Path

Search Result 8, Processing Time 0.02 seconds

A Robust Energy Saving Data Dissemination Protocol for IoT-WSNs

  • Kim, Moonseong;Park, Sooyeon;Lee, Woochan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5744-5764
    • /
    • 2018
  • In Wireless Sensor Networks (WSNs) for Internet of Things (IoT) environment, fault tolerance is a most fundamental issue due to strict energy constraint of sensor node. In this paper, a robust energy saving data dissemination protocol for IoT-WSNs is proposed. Minimized energy consumption and dissemination delay time based on signal strength play an important role in our scheme. The representative dissemination protocol SPIN (Sensor Protocols for Information via Negotiation) overcomes overlapped data problem of the classical Flooding scheme. However, SPIN never considers distance between nodes, thus the issue of dissemination energy consumption is becoming more important problem. In order to minimize the energy consumption, the shortest path between sensors should be considered to disseminate the data through the entire IoT-WSNs. SPMS (Shortest Path Mined SPIN) scheme creates routing tables using Bellman Ford method and forwards data through a multi-hop manner to optimize power consumption and delay time. Due to these properties, it is very hard to avoid heavy traffic when routing information is updated. Additionally, a node failure of SPMS would be caused by frequently using some sensors on the shortest path, thus network lifetime might be shortened quickly. In contrast, our scheme is resilient to these failures because it employs energy aware concept. The dissemination delay time of the proposed protocol without a routing table is similar to that of shortest path-based SPMS. In addition, our protocol does not require routing table, which needs a lot of control packets, thus it prevents excessive control message generation. Finally, the proposed scheme outperforms previous schemes in terms of data transmission success ratio, therefore our protocol could be appropriate for IoT-WSNs environment.

Shortest Path Planning and Robust Control of Two-wheeled Mobile Robot (이륜구동로봇의 최단거리계획과 강인제어)

  • Kim, H.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.172-180
    • /
    • 2006
  • 본 논문은 Dijkstra 알고리즘에 기초한 최단거리 경로계획을 하며 이 경로를 추적하기 위한 슬라이딩 모드 제어를 제시한다. 슬라이딩 모드 제어기는 동적매개변수 불확실성과 입력외란이 존재 시에도 강인 점근적으로 계획된 경로를 추적하도록 한다. 더불어 작업장 내의 이동로봇의 위치를 USB 카메라에 의해 감지하며, Pin-hole 카메라모델로 하여 카메라에 의해 관측되는 작업장 내의 이륜구동로봇의 위치좌표를 결정하였으며, 이 위치를 정확히 감지하기 위해 Tsai법을 사용하여 카메라 보정한다. 시뮬레이션 결과는 슬라이딩 모드 제어기의 성능을 검증하기 위해 보였다.

  • PDF

A Heuristic Algorithm to Find the Critical Path Minimizing the Maximal Regret (최대후회 최소화 임계 경로 탐색 알고리듬)

  • Kang, Jun-Gyu;Yoon, Hyoup-Sang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.90-96
    • /
    • 2011
  • Finding the critical path (or the longest path) on acyclic directed graphs, which is well-known as PERT/CPM, the ambiguity of each acr's length can be modeled as a range or an interval, in which the actual length of arc may realize. In this case, the min-max regret criterion, which is widely used in the decision making under uncertainty, can be applied to find the critical path minimizing the maximum regret in the worst case. Since the min-max regret critical path problem with the interval arc's lengths is known as NP-hard, this paper proposes a heuristic algorithm to diminish the maximum regret. Then the computational experiments shows the proposed algorithm contributes to the improvement of solution compared with the existing heuristic algorithms.

A Robust Attitude Control Scheme Based on Eigenaxis Rotation for Spacecraft (고유축 회전에 근거한 우주비행체 강인 자세제어 기법)

  • Nam, Heon-Seong;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.147-156
    • /
    • 2001
  • In this paper, a robust attitude control scheme based on Eigenaxis rotation for the spacecraft is proposed. Eigenaxis rotation transforms the attitude of spacecraft to the shortest path and is represented by quaternion. The control law consists of PD-type control part for the nominal system and the robust control part for compensating inertia uncertainty. For the proposed controller, stability analysis is performed and the performance is shown via computer simulation.

  • PDF

3D Shape Descriptor Based on Surface Distance (표면 거리 기반 3차원 형태 기술자)

  • Park Hyun;Kim Jea-Hyup;Moon Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.59-66
    • /
    • 2006
  • In this thesis, we propose a new 3D shape descriptor. The proposed descriptor measures geometric characteristics by using the shortest path on surfaces. The descriptor is robust against a change of local posture. We measure the geometric characteristics of 3D object through a new shape function to construct the shape distribution. The proposed shape function is the shortest path shape function. The shape function measures the distance between two points on the surface of a 3D object. We evaluate the performance of the proposed method, compared with the previous method. The precision of retrievals improved by 23% in the case of articulated objects and is improved by 12% in the case of general objects.

Path Planning for the Shortest Driving Time Considering UGV Driving Characteristic and Driving Time and Its Driving Algorithm (무인 주행 차량의 주행 특성과 주행 시간을 고려한 경로 생성 및 주행 알고리즘)

  • Noh, Chi-Beom;Kim, Min-Ho;Lee, Min-Cheol
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • $A^*$ algorithm is a global path generation algorithm, and typically create a path using only the distance information. Therefore along the path, a moving vehicle is usually not be considered by driving characteristics. Deceleration at the corner is one of the driving characteristics of the vehicle. In this paper, considering this characteristic, a new evaluation function based path algorithm is proposed to decrease the number of driving path corner, in order to reduce the driving cost, such as driving time, fuel consumption and so on. Also the potential field method is applied for driving of UGV, which is robust against static and dynamic obstacle environment during following the generated path of the mobile robot under. The driving time and path following test was occurred by experiments based on a pseudo UGV, mobile robot in downscaled UGV's maximum and driving speed in corner. The experiment results were confirmed that the driving time by the proposed algorithm was decreased comparing with the results from $A^*$ algorithm.

Minmax Regret Approach to Disassembly Sequence Planning with Interval Data (불확실성 하에서 최대후회 최소화 분해 계획)

  • Kang, Jun-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.192-202
    • /
    • 2009
  • Disassembly of products at their end-of-life (EOL) is a prerequisite for recycling or remanufacturing, since most products should be disassembled before being recycled or remanufactured as secondary parts or materials. In disassembly sequence planning of EOL products, considered are the uncertainty issues, i.e., defective parts or joints in an incoming product, disassembly damage, and imprecise net profits and costs. The paper deals with the problem of determining the disassembly level and corresponding sequence, with the objective of maximizing the overall profit under uncertainties in disassembly cost and/or revenue. The solution is represented as the longest path on a directed acyclic graph where parameter (arc length) uncertainties are modeled in the form of intervals. And, a heuristic algorithm is developed to find a path with the minimum worst case regret, since the problem is NP-hard. Computational experiments are carried out to show the performance of the proposed algorithm compared with the mixed integer programming model and Conde's heuristic algorithm.

Analysis of a Large-scale Protein Structural Interactome: Ageing Protein structures and the most important protein domain

  • Bolser, Dan;Dafas, Panos;Harrington, Richard;Schroeder, Michael;Park, Jong
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.26-51
    • /
    • 2003
  • Large scale protein interaction maps provide a new, global perspective with which to analyse protein function. PSIMAP, the Protein Structural Interactome Map, is a database of all the structurally observed interactions between superfamilies of protein domains with known three-dimensional structure in thePDB. PSIMAP incorporates both functional and evolutionary information into a single network. It makes it possible to age protein domains in terms of taxonomic diversity, interaction and function. One consequence of it is to predict the most important protein domain structure in evolution. We present a global analysis of PSIMAP using several distinct network measures relating to centrality, interactivity, fault-tolerance, and taxonomic diversity. We found the following results: ${\bullet}$ Centrality: we show that the center and barycenter of PSIMAP do not coincide, and that the superfamilies forming the barycenter relate to very general functions, while those constituting the center relate to enzymatic activity. ${\bullet}$ Interactivity: we identify the P-loop and immunoglobulin superfamilies as the most highly interactive. We successfully use connectivity and cluster index, which characterise the connectivity of a superfamily's neighbourhood, to discover superfamilies of complex I and II. This is particularly significant as the structure of complex I is not yet solved. ${\bullet}$ Taxonomic diversity: we found that highly interactive superfamilies are in general taxonomically very diverse and are thus amongst the oldest. This led to the prediction of the oldest and most important protein domain in evolution of lift. ${\bullet}$ Fault-tolerance: we found that the network is very robust as for the majority of superfamilies removal from the network will not break up the network. Overall, we can single out the P-loop containing nucleotide triphosphate hydrolases superfamily as it is the most highly connected and has the highest taxonomic diversity. In addition, this superfamily has the highest interaction rank, is the barycenter of the network (it has the shortest average path to every other superfamily in the network), and is an articulation vertex, whose removal will disconnect the network. More generally, we conclude that the graph-theoretic and taxonomic analysis of PSIMAP is an important step towards the understanding of protein function and could be an important tool for tracing the evolution of life at the molecular level.

  • PDF