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Shortest Path Planning and Robust Control of Two—wheeled

Mobile Robot
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1. Introduction

A two-wheeled mobile robot has been used in
several industrial works such as welding,
painting, etc. There can be obstacles in their
work spaces. The robot needs a path planning to
avoid these obstacles.

There were the several literatures about the
path planning as follows. S. Sundar, etc. proposed
the shortest path from an initial point to the
target using HJB path planning method”. A.
Hoover, etc. concentrated on path characteristics,
such as smoothness and continuousness using
polynomial approach®.

For the mobile robot to track the path
generated by the path planning method, a control
method for mobile robot is needed. The several
researchers proposed the control methods as
Fierro proposed transformation of
model

follows.
and
computed torque control law using backstepping
approach based on Lyapunov function”. D. K.
Chwa et al. proposed a sliding mode controller for

dynamic into kinematic model

Aed 0 20061d 119 209, A€84 : 200610 1149 289
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trajectory tracking of a nonholonomic wheeled
mobile robots under the presence of the external
disturbances represented as two-dimensional polar
coordinates’. The mobile robot dynamic
parameters are assumed to be totally known in
the two above controllers. T. Fukao proposed the
integration of a kinematic adaptive controller and
a torque controller of a nonholonomic mobile
robot with the dynamic parametric uncertainties?.
These controllers can ensure robustness only with
respect to input disturbances but the parameter
variations cannot be dealt with.

In this paper, firstly, the shortest path is
planned based on Dijkstra’s algorithm, and then
the path
algorithm. Secondly, even in the presence of

is smoothened using cubic spline

uncertainties of both parameter variations and
input disturbances, the sliding mode controller
(SMC) for a mobile robot to track the planned
path is proposed . The proposed controller is
based on two nonlinear sliding surfaces ensuring
the tracking of the three output variables
This
implies the vanishing of the orientation error on
the second sliding surface. Thirdly, a USB
camera is calibrated using Tsai’s method to detect

exploiting the nonholonomic constraint.
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the mobile robot localization exactly. Finally, the
simulation results show the effectiveness of the
system model, the proposed controller and the
camera calibration method.

2. Path Planning for Mobile Robot

The problem to avoid these obstacles is to find
a collision free path for a mobile robot with two
degree of freedom between two given points. The
general idea for the path planning problems can
be stated with the following assumptions:

(1) The obstacles are considered to be 2D
convex or concave polygonal with unknown vertices,
and a mobile robot is a 2D convex polygonal.

(2) The obstacles are grown by the size of the
mobile robot, thereby reducing the analysis of the
robot's motion from a moving area to a single
moving point.

In this paper, the simplest map called the
visibility graph is considered.

2.1 Visibility graph

A standard visibility graph is defined in a
two—dimensional polygonal configuration space. A
visibility graph is an undirected graph
G=(V,E) whereV is the set of vertices v; of
the grown obstacles O; plus the START and
GOAL points, and £ is a set of edges e;;, (i,7)
are the index of the obstacles which are
segments that

line-of-sight vertices v; and v;.

straight-line connect two
Rather, they
consist of all polygonal obstacle boundary
edges and edges between any two vertices in
V that lies entirely in free space except for its

endpoints.

)
I e e
-,;;? ZSEAS
[X sy

éﬁi&

START

Vertex v,

o}

%
Fig. 1 Visibility graph

2.2 Shortest Path Finding — Dijkstra’s Algorithm
The pseudocode of the Dijkstra’s algorithm is
as follows:

//*****************************************

1 function Dijkstra( G,w,s)
2 for each vertex v in V[@]]//Initialization
3 dody :
previous[v]
dls] :
S =
Q:
while is not an empty set
do u = Extract-Min(Q)
S =8 union {u}
for each edge (u,v) outgoing from u
do if dlv]>dw)+ w(u,v)//Relax (u,v)
then dlv]] =d(u)+w(u,v)
14 previous[v] = u
15 @ = Update(Q)

e L L

infinity

undefined

empty set
set of all vertices

© 0 N O O >

10
11
12
13

The shortest path needs to be smooth, and
cubic spline algorithm can be applied totally. The

result trajectory of cubic spline is shown in Fig.
2.

Fig. 2 Dijkstra and cubic spline implementation

3. Robust SMC for Mobile Robot

3.1 Dynamic model of the WMR
The model of the two—wheeled mobile robot is
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shown in Fig. 3.

Fig. 3 Model of the two-wheeled mobile robot

Lagrange equation of motion for the

non—holonomic mobile platform system are given
by:

2= flz)+g(2)u+d) (D
where
— Asin® bycos¢ 0
flz)= bl[ Acos¢ |, g(z)=|bsing 0],
0 0 b

[Ul] [Tl + 72] [dl] [Tld + Td2}
u= = . , d= - _
Uy ) d, Td1 — T4z

1 b

EIEAT A L
rim+ —— I+ —

r 2c?

b, =

27, \,. . -
A= (m+ —2—)(xcos¢+y sin¢)¢+ m,dw
T

where the posture of the mobile robot be
z= |z y ¢]T, (z,y) is center position and ¢ is

rotation angle of mobile platform, m, I, are the

mass of the WMR and moment of inertia of
wheel, r is wheel radius, b is distance between
center position and symmetry axis of mobile
platform, 7,7, are torques of right and left
wheels, X is Lagrange multiplier and 7, 7;, are
input disturbances. The
assumption that the signs of bjand b, are

is unknown bounded

known is practical since band b, are

represented as combinations of the robot’s

mass, moment of inertia, wheel radius and

distance between the rear wheels constant
The
supposed uncertain with bounded uncertainties:

with known signs. parameters are

m=m+m, I=T+1, b=b+b, r=r+r

where m,7,b,7 are nominal values of mass,
Inertia of moment, distance between center
position and symmetry axis of mobile platform
and wheel radius, and |ml<m,,,, |A<1Z,,,,

bl < binaxs |7l < Tmax With my ., . b

max?%max>Tmax
being known constants.

Also, the input disturbances are assumed to be
bounded as |ry|< Tyimax aNA |745| < Tyomax and
Tamax Tdomax Are known constants.

—511— and S, = biz

The above assumptions on the uncertainty

Let it be defined as 8, =

bounds for myb, 1, LTy s Tyo produce

corresponding bounded variations on the

following 8, and B,:

ﬁ1=)6’\1+51’ ﬂ2=ﬁ;+52, |:§1islglmax and

|/§2| = ,B2max

QOur objective is finding a robust feedback
controller for the dynamic model Eq. (1),
guaranteeing the tracking of a reference trajectory
zZ, = [xryr ¢7‘]T
tracking errors even in the presence of plant

with asymptotically vanishing

uncertainties and input disturbances.
Let’s define the tracking error as follows:

€ T—x,
e=|e|=|y—yr (2)
€3 ¢—¢r

The second derivative of error is as follows:

- %sin(e3+¢r) +b, (uy +dy)cos ey +6,) —z,

e= %cos(e3+¢r) +b, (1, +d1)sin(ea+¢r)—§r 3)
b2 (u+d2) —ér

3.2 Robust siding mode controller design
Let’s define two auxiliary variables as follows:
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DL =T~ Mey, Py = Y Ma€z With v,7, >0 (4)

The sliding surface s; is defined as

si=Va +y = /pi+p;=0

The achievement of a sliding motion on s,

(5)

implies the following:

Vr'l:2+3'/2=\/pf+p§ (6)
The time derivative of s; is as follows
31=b1u1—f(z,t) 7
P1P.1+P21;2
where f(z,t) = ————=
Vi +ps
Similarly, w= ¢= byu, = 2
B2
In the nominal case, the control law is
ull = M= B,f(z,t). During sliding motion,

1

the reachability condition gives the control

input u, = uf?+u"+d, that is s;5, < 0.

s18,= s, (byu, — f(z,t)) 8)

=%1—[u’{+d1)—ﬁlf(z,t)] <0
1

To satisfy the inequality condition Eq. (8), the
control input can be chosen as

="
with

(dlmax +/Blmax )|f(z,t)|)szgn(81)
>0

uy

(9)

Eq. (9) ensures Eq. (8).
The following variables are defined as follows:

_ 23
{!I/ = arctan( o ) (10)
M=U—¢
and the sliding surface s, is defined as
32=M+pM=O, p>0 an

When a sliding motion occurs on s, the ¢

tends to ¥ with time constant The

asymptotic tracking of the desired orientation

angle is ensured by Eq. (5) and Eq. (11).
Similarly, the mobile robot is described by the

dynamic model Eq. (1) with the control law

(12)

Uy = ug? + uy

Coupling with the condition of sliding motion
on s, guarantees the asymptotic vanishing of
the tracking errors with dynamics assigned by
Y10 V2-

In the nominal case, the equivalent control input

can be derived by s, =0, that is,

o= M+ pM= (!P— 1/)). + p.(Q'/— $)=0 (13)
=¢= T+ p(¥—¢)
ug! = Byl + p(I— $)] (14)

In the perturbed situation, the sliding mode
existence condition is as follows:

52:92 <0 (15)

85857 8 [(F— ) + p(T— ] (16)

= (- g+ ) 4,4 p (5= )]}

$y= M+ pM= (w— P+ p.(L.U— ) =0
=¢= T+ p(T— )

eq

with 4% =B, [0+ p(¥— )], Combining Eags.

(15) and(16) can be rewritten as follows:

o i —dy+ B+ pi- )] < 0 an
2

To satisfy the condition Eq. (15), the control
input can be chosen as

'U,; == 772[d2mx1x +ﬂ2mnxl¢+ p(w_ ¢)|]szgn(32) (18)
with n, > 1

When a sliding motion occurs on Eq. (13), the
vanishing of M implies that ¢ tends to &, that
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is,
tan(¢) = P (19)
D
On the other hand, the nonholonomic
constraints gives
, D2
sin(p) = —mle==
cos (¢)= =

x Dy
T Y

Additionally, the simultaneous achievement of

sliding motion on s; gives

Vartyt= ot + 5 @1
From Eq. (20) and Eq. (21) it follows

T=p, = -”;'r_ Mér (22)
T= Py = Yp™ 2€2

That is,

ﬂ‘c_ :I;rz e.l:_ ’)’lel (23)
Y~ Y,= €= Y269

Eq. (23) ensures that e, and e,

asymptotically vanish with assigned dynamic.

As a result, from Eq. (10), ¥ converges to

arctan(ﬁj. Moreover, due to Eq. (11), ¢

Yr

converges to the desired orientation. The block

di

agram of the controller is given in Fig. 4.
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Fig. 4 Block diagram of the controller
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4. Mobile Robot Localization

In this paper, the position of the mobile robot
can be detected using camera. The camera
calibration processing uses one of the well-
established Tsai's methods which are popular
among computer vision researchers: mono-view
coplanar points with a known target object. With
this method, the invariable intrinsic parameters of
the camera can be derived, and they are used to
compute the camera'‘s localization with respect to
the object based on a number of feature points on
it. The camera localization is, in turn, useful
information for path planning scheme and for
mobile robot localization.

4.1 Camera model
The basic geometry of a pin—hole camera model

is illustrated in Fig. 5. In the figure,
(0,— X,Y,Z,) is the 3D coordinate system of
world space, and (O—XYZ) is the 3D

coordinate system of the camera frame with
the camera origin O at the focus point of the
camera and the Z-axis coinciding with the
optical axis and pointing to the back of the
camera. Let (O— XY) be the 2D coordinate
system of CCD/CMOS sensor image frame, and
(O— XpYy) the 2D
coordinate system. The distance between the

is computer image
sensor image frame and the camera origin is
called camera focal length f.

Let P, =(x,, Y. 2,)be a point in the 3D
world space, called the feature point, and its
camera coordinate representation be
P=(z,y,z). The coordinates (X, Y;) is the
sensor image coordinate of P,. The coordinate
(X, Y,) is the actual image coordinate which
differs from (X,,Y,) due to lens distortion.
The (X}, Y;) the

coordinate in the computer memory which can

coordinate represents
be obtained through image processing. The
coordinate (C,,C,) represents the image center
computer it
assumed that image center position is located

position in memory, and is

s

3

at center of the computer memory.

Fig. 5 Pin-hold camera model

4.2 Camera calibration using mono-view coplanar
points
STAGE 1: Compute the extrinsic parameters
T,, TRy, Ty Ry
Step 1:Compute the distorted image coordinate
(X, Y,)

x

Xy=s;'d,(X;;— C,)
{Yd,: (Y- (24)

where i= 1...n, N is the number of feature
points and must be larger than five.

Step 2: Compute the five unknowns T7j r,
1

T, “re, Ty_lTw’ 7517'4’ Ty-ITF’

Wlth (xwi?ywi’ Rwi ) and

(X, ¥;) in the above, the following linear

For each point ¢

equation must be setup with T, 'r, T, 'ry,

7, 'T,, T, 'r,, and T, 'r; as unknowns:

T, ]rl
T, 1r2
[Y;h'xwi Yihi Yoo —Xaiui —Xdiywi] T, IT’E =Xy
'
Y 4
T, 'r
(25)

An over-determined system of linear equations
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Eq. (25) can be solved for the five unknowns
Ty_lrl,Ty_ITQ, Ty_sz, Ty'_lr4, and Ty'_lr5.
Step 3 (ryyrp Ty T,y)
(];_17‘1,TJITZ,I;ITI,IL—lT‘,I,]Ty_lTE))
STAGE 2: Compute effective focal length f,
distortion coefficients k;, and 77

Compute from

Step 4: Compute an approximation of f and
T, by ignoring lens distortion:

For each feature point ¢, the following linear
equation is established with f and 7, as

unknowns:
v ~4,Y| 1] = w, ¥,

where

(26)

Yi = Tyly; T TsYus T 760 + Ty

W; = Ty T Tglw; T 790

Since rotation matrix R, translations 7, and
T, are known, this yields an over—determined
system of linear equations that can be solved
for the unknowns f and Tj.

Step 5: Compute the exact solution for f, T, k

Eq. (26) is solved with f, T, k, as unknowns
using standard optimization scheme such as
steepest descent. The approximation for f and
T, is used which are computed in step 4 as

initial guess, and zero as the initial guess for
bed and

computer user interface are shown in Fig. 6

k. The camera calibration test

and 7. The results of the camera parameters
are given in Table 1.

Table 1 Camera parameters and calibration results

Calibration Results

Focal Length f 7.96 [mm]

Lens Distortion Coefficient k; | 0.003946 [1/mm®]
X Translation 7, 1.49 [mm]

Y Translation 7 2.84 [mm]

Z Translation T, 429.38 [mm]

X Rotation FZ, 5.98 [deg]

Y Rotation f2, 8.73 [degl

Z Rotation [, -0.02 [degl

Rotation Matrix

0.988412 0016252 0.150921

TiT27s 0000427 0.994545 -0.104303
R=|T4T5Tg ~0.151792 0.103030 0.983028
T7Tg Ty
Distorted image plane error.
Error Mean 2.1565 [pixell
Standard Deviation 0.5872 [pixell
Error Max 2.9780 [pixel]
Undistorted image plane error
Error Mean 2.1432 [pixel]
Standard Deviation 0.5804 [pixel]
Error Max 2.9322 [pixell

Fig. 7 Camera user interface

5. Development of Control System

The control system is based on the integration
of computer and PIC-based microprocessor. The
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computer functions as high as high level control
for image processing and control algorithm, and
the microprocessor, as low level controller for
device control. The configuration diagram of the
overall control system is shown in Fig. 8 and the
control system is given in Fig. 9, respectively.

Wireless comm.

Promi-SD
,_ R5232Comm./'

Fig. 8 The work space of the total system

For the operation, USB camera Logitech 4000 is
used to capture the image stream into memory
with 32.0 X240 30fps
QuickCam SDK. The image is processed using

size of at using
image processing library Open CV to extract
the features from the image for the object’s
position detection. The torque command is sent
to the low level to control the mobile robot to

track a certain trajectory.

Left Mator

Servo Controfier 1
PIC18F6520

Servo Board

3
> Servo Cortrolier 2
PIC18FE520

Right Motor

Right
La— Gearbox Encoder

Fig. 9 Diagram of the control system

6. Simulation Results

To verify the effectiveness of the controller, the

s

%

simulations have been done with controller Eq.
(12) and Eq. (21) using Simulink. The reference
trajectory for the mobile platform is shown in
Fig. 10. The mobile robot is described by the
dynamic model Eq. (4) with the following nominal
values for the physical parameters:

m = 20.6Kg, I=2Kgm®, r=110mm, R= 200mm.
The are  z(0)=0.28m,
y(0)=0.395m, and ¢(0)=5 . The controller
set

Initial values

are as followsir; =5, r, =5, p=17.5,

n, =n, =17.5. The constant input disturbances

d,=03NMNm and d,=0.3Nm has been
considered with the maximum amplitude,
dipax = domax =0-5Nm  but they are not

considered in this simulation.

Simulation results are given through Figs.
11-19. The mobile platform's tracking errors are
given in Fig. 11 for full time (20s) and Fig. 12
for the initial time (4s), respectively. It can be
seen that the platform errors go to zero after
about 3 seconds. The sliding surface s, and
s, are shown in Figs.13 and 14, respectively.
The sliding surfaces are chattering about the
values of zero as desired and continue sliding
on that The
velocities at mobile platform center are shown
in Figs. 15 and 16 for full time (20s). The
velocities of the left and right wheel
shown in Figs. 18. It can be seen that the
tracking velocity is in the vicinity of 100mm/s

surfaces. linear and angular

are

as desired. Fig. 19 shows the velocities of the
wheels for part time(6s).

(1.1893,1.3093)

[} Y
(1.5893,1.3093)
(0.9346,1.0546) T* 757500
FOB o1 (0.9346,0.6546)
(0.28,0.4) /
(0.6804) X

Fig. 10 Reference trajectory
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Fig. 11 Platform tracking errors for full time
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Fig. 12 Platform tracking errors for the initial time
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Fig. 17 Angular velocity for part time (6s)
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Fig. 18 Velocities of the left and right wheel
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Fig. 19 Velocities of the wheels for part time (6s)

7. Conclusions

In this paper, the robust tracking problem for
the dynamical model of a WMR is solved using
sliding mode control. The presence of bounded
parameter uncertainties and input disturbances are
considered. The controller is designed based on
two nonlinear sliding surfaces ensuring the
tracking of the three output variables exploiting
the constraint. The robust
asymptotic vanishing of the tracking errors has
been theoretically proved using sliding mode
control. Also, the shortest path finding based on
Dijkstra’s algorithm and the camera calibration
results have been verified.

nonholonomic
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