• Title/Summary/Keyword: Robust Observer

Search Result 445, Processing Time 0.02 seconds

Robust Sensorless Control for Induction Motor Drives Fed by a Matrix Converter with Model Reference Adaptive Control (매트릭스 컨버터를 이용한 유도전동기 구동장치의 기준모델 적응제어기법 기반의 강인한 센서리스 제어)

  • Sim, Gyung-Hun;Huh, Sung-Hoi;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.610-616
    • /
    • 2008
  • This paper presents a new robust sensorless control system for high performance induction motor drives fed by a matrix converter with variable structure. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by a variable structure approach based on model reference adaptive scheme. A Reduced Order Extended Luenberger Observer(ROELO) is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

Dynamic Positioning Control System Design for Surface Vessel: Observer Design Based on H Control Approach (수상선박의 위치 및 자세제어시스템 설계에 관한 연구 : 강인제어기법에 의한 관측기 설계)

  • Kim, Young-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1171-1179
    • /
    • 2012
  • In this study, we consider a dynamic positioning system (DPS) design problem that can be extended to many application fields. Toward this end, tracking and positioning control problems are discussed. In particular, we design a tracking control system that incorporates an observer based on the 2-DOF servo system design approach in order to obtain the desired state information. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation (inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator that satisfies the weighted $H_{\infty}$ error bound is introduced. The condition for the existence of the estimator is denoted by a linear matrix inequality (LMI) that yields an optimized solution and the observer gain.

RCGA-Based States Observer Design of Container Crane concerned with Design Specification (설계사양을 고려한 컨테이너 크레인의 RCGA기반 상태 관측기 설계)

  • Lee, Soo-Lyong;Ahn, Jong-Kap;Lee, Yun-Hyung;Son, Jeong-Ki;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.851-856
    • /
    • 2008
  • Construction of large-scale container ports with the productivity improvements in container cranes shortened time of staying port to increase the level of service it harbors efforts accelerated. About container crane system exerted on the input, which is designed to look good performance considering the states feedback control system. The states observer designed of container cranes state variables that are expected to measurement noise or particular measurement signal. In the status of existing research, the feedback gain matrix and the state observer gain matrix are searched by being separated solving. But the feedback gain matrix and the state observer gain matrix are searched by RCGAs at once that be used robust search method in this paper.

Estimating Location in Real-world of a Observer for Adaptive Parallax Barrier (적응적 패럴랙스 베리어를 위한 사용자 위치 추적 방법)

  • Kang, Seok-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1492-1499
    • /
    • 2019
  • This paper propose how to track the position of the observer to control the viewing zone using an adaptive parallax barrier. The pose is estimated using a Constrained Local Model based on the shape model and Landmark for robust eye-distance measurement in the face pose. Camera's correlation converts distance and horizontal location to centimeter. The pixel pitch of the adaptive parallax barrier is adjusted according to the position of the observer's eyes, and the barrier is moved to adjust the viewing area. This paper propose a method for tracking the observer in the range of 60cm to 490cm, and measure the error, measurable range, and fps according to the resolution of the camera image. As a result, the observer can be measured within the absolute error range of 3.1642cm on average, and it was able to measure about 278cm at 320×240, about 488cm at 640×480, and about 493cm at 1280×960 depending on the resolution of the image.

Comparative Analysis of PI Controller and Disturbance Cancellation Observer of a Feedforward (비례적분제어기와 feedforward 외란상쇄 관측기의 비교분석)

  • Kim, Young-Choon;Song, Ho-Bin;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.12
    • /
    • pp.3581-3586
    • /
    • 2009
  • This paper designed a robust control of an induction motor using a disturbance cancellation observer of a feedforward control. The speed response of conventional PI controller characteristic is affected by variations of load torque disturbance. In the proposed system, the speed control characteristic used a feedforward control which does not undergo the influence of the load torque disturbance. High speed calculation and processing for vector control is carried out by TMS320C31 digital signal processor. Validity of the proposed control method is verified through simulation and experimental result.

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

Sliding Mode Observer Driver IC Integrated Gate Driver for Sensorless Speed Control of Wide Power Range of PMSMs

  • Oh, Jimin;Kim, Minki;Heo, Sewan;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1176-1187
    • /
    • 2015
  • This work proposes a highly efficient sensorless motor driver chip for various permanent-magnet synchronous motors (PMSMs) in a wide power range. The motor driver chip is composed of two important parts. The digital part is a sensorless controller consisting mainly of an angle estimation block and a speed control block. The analog part consists of a gate driver, which is able to sense the phase current of a motor. The sensorless algorithms adapted in this paper include a sliding mode observer (SMO) method that has high robust characteristics regarding parameter variations of PMSMs. Fabricated SMO chips detect back electromotive force signals. Furthermore, motor current-sensing blocks are included with a 10-bit successive approximation analog-to-digital converter and various gain current amplifiers for proper sensorless operations. Through a fabricated SMO chip, we were able to demonstrate rated powers of 32 W, 200 W, and 1,500 W.

Adaptive Fuzzy Observer without SPR Condition for Uncertain Nonlinear Systems (불확실한 비선형 계통에 대한 SPR 조건이 필요 없는 적응 퍼지 관측기)

  • Park, Jang-Hyun;Kim, Seong-Hwan
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.156-165
    • /
    • 2003
  • This paper describes the design of a robust adaptive fuzzy observer for uncertain nonlinear dynamical system. We propose a new method in which no strictly positive real (SPR) condition is needed. No a priori knowledge of an upper bound on the lumped uncertainty is required. The Lyapunov synthesis approach is used to guarantee a semi-global uniform ultimate boundedness property of the state observation error, as well as of all other signals in the closed-loop system. The theoretical results are illustrated through a simulation example of a mass-spring-damper system.

  • PDF

A High-Performance Speed Sensorless Control System for Induction Motor with Direct Torque Control (직접 토크제어에 의한 속도검출기 없는 유도전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • This paper presents an implementation of digital high-performance speed sensorless control system of an induction motor drives with Direct Torque Control(DTC). The system consists of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control for wide speed range. The speed estimator is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal estimation. In order to prove the suggested speed sensorless control algorithm, and to obtain a high-dynamic robust adaptive performance, we have some simulations and actual experiments at low(20rpm) and high(1000rpm) speed areas. The developed speed sensorless system are shown a good speed control response characteristic, and high performance features using 2.2[kW] general purposed induction motor.

Rotor Time Constant Estimation for Induction Motor Direct Vector Control (유도전동기 직접벡터제어를 위한 회전자 시정수 추정)

  • Bae Sang-Jun;Choi Jong-Woo;Kim Heung-Geun;Lee Hong-Hee;Chun Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.413-419
    • /
    • 2004
  • In the induction motor direct vector control system using the Gopinath model flux observer, the deterioration of the dynamic response due to the detuned rotor time constant is investigated. To solve this problem, the on line estimation algorithm of the rotor time constant using model reference adaptive control is proposed. The effect of the motor parameter variation on the rotor time constant estimation is analyzed through experiment. The estimation error due to the parameter variation converges within 5%. Thus applying the proposed algorithm to the Gopinath model flux observer, the robust direct vector control system of the induction motor to the parameter variation can be implemented.