• Title/Summary/Keyword: Robust Observer

Search Result 445, Processing Time 0.028 seconds

Gain Tuning for SMCSPO of Robot Arm with Q-Learning (Q-Learning을 사용한 로봇팔의 SMCSPO 게인 튜닝)

  • Lee, JinHyeok;Kim, JaeHyung;Lee, MinCheol
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.221-229
    • /
    • 2022
  • Sliding mode control (SMC) is a robust control method to control a robot arm with nonlinear properties. A high switching gain of SMC causes chattering problems, although the SMC allows the adequate control performance by giving high switching gain, without the exact robot model containing nonlinear and uncertainty terms. In order to solve this problem, SMC with sliding perturbation observer (SMCSPO) has been researched, where the method can reduce the chattering by compensating the perturbation, which is estimated by the observer, and then choosing a lower switching control gain of SMC. However, optimal gain tuning is necessary to get a better tracking performance and reducing a chattering. This paper proposes a method that the Q-learning automatically tunes the control gains of SMCSPO with an iterative operation. In this tuning method, the rewards of reinforcement learning (RL) are set minus tracking errors of states, and the action of RL is a change of control gain to maximize rewards whenever the iteration number of movements increases. The simple motion test for a 7-DOF robot arm was simulated in MATLAB program to prove this RL tuning algorithm. The simulation showed that this method can automatically tune the control gains for SMCSPO.

Robust Speed Control of a Permanent Magnet Synchronous Motor using a Fuzzy Logic Controller (퍼지제어기를 이용한 영구자석 동기전동기의 강인한 속도제어)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.343-351
    • /
    • 2010
  • This paper proposes a new fuzzy speed controller based on the Takagi-Sugeno fuzzy method to achieve a robust speed control of a permanent magnet synchronous motor (PMSM). The proposed controller requires the information of the load torque, so the second-order load torque observer is used to estimate it. The LMI condition is derived for the existence of the proposed fuzzy speed controller, and the gains of the controller are provided. It is proven that the augmented control system including the fuzzy speed controller and the load torque observer is exponentially stable. To evaluate the performance of the proposed fuzzy speed controller, the simulation and experimental results are presented under motor parameter variations. Finally, it is clearly verified that the proposed control method can accurately control the speed of a permanent magnet synchronous motor.

Robust Digital Redesign for Observer-based System (관측기 기반 시스템에 대한 강인 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.285-290
    • /
    • 2007
  • In this paper, we presents robust digital redesign (DR) method for observer-based linear time-invariant (LTI) system. The term of DR involves converting an analog controller into an equivalent digital one by considering two condition: state-matching and stability. The design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed the uncertain parts of given observer-based system more precisely, When a sampling period is sufficiently small, the conversion of a analog structured uncertain system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

Sensorless Speed Control System Using a Neural Network

  • Huh Sung-Hoe;Lee Kyo-Beum;Kim Dong-Won;Choy Ick;Park Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.612-619
    • /
    • 2005
  • A robust adaptive speed sensorless induction motor direct torque control (DTC) using a neural network (NN) is presented in this paper. The inherent lumped uncertainties of the induction motor DTC system such as parametric uncertainty, external load disturbance and unmodeled dynamics are approximated by the NN. An additional robust control term is introduced to compensate for the reconstruction error. A control law and adaptive laws for the weights in the NN, as well as the bounding constant of the lumped uncertainties are established so that the whole closed-loop system is stable in the sense of Lyapunov. The effect of the speed estimation error is analyzed, and the stability proof of the control system is also proved. Experimental results as well as computer simulations are presented to show the validity and efficiency of the proposed system.

A Robust Input Modification Approach for High Tracking Control Performance of Flexible Joint Robot

  • Park, Min-Kyu;Lee, Sang-Hun;Hur, Jong-Sung;Yim, Jong-Guk;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1249-1253
    • /
    • 2004
  • A robust input modification approach to the control of flexible joint robot is presented. In our previous study, we developed an observer based state feedback control for the suppression of residual vibration of a robot. The control was very effective in suppressing the inherent vibration of a flexible joint robot. However it did not meet high performance requirements under high speed motion and model uncertainties. As a solution of the problem, we present an input modification method with robustness against parametric uncertainties. The main idea of the proposed input modification method is to generate a modified reference position command for fast and accurate motion of the robot. Using this proposed method we can reduce the servo delay and settling time by about 60% and substantially improve the path accuracy.

  • PDF

Robust Tracking Control of Smart Flexible Structures Featuring Piezofilm Actuators (압전필름 작동기로 구성된 스마트 유연 구조물의 강건추적제어)

  • Lee, Chul-Hee;Choei-Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1498-1507
    • /
    • 1996
  • This paper presents a robust control of a smart flexible structure featured by a piezofilm actuator characterizing its light weght and quick response time. A mathematical governing equation for the proposed structure is derived by employing Hamilton's principle and a state space control model is subsequentrly obtained through modal analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theroy thich has inherent robustness to systme uncertainties is adopted to design a tracking controller for the peizofilm actuator. Using the output informaiton from the tip deflection sensor, a full-order observer is constructed ot estimate state variables for the system. Tracking performances for desired trajectories of sinusoidal amd step functions are evaluated by undertaking both simulation and experimental works.

Robust Time-Optimal Control for Coarse/Fine Dual-Stage Systems

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.317-320
    • /
    • 1999
  • A robust end time optimal conかof strategy for dual-stage servo system is presented. The time optimal trajectory for a mass-damper system is determined and given os a reference input to the servo system. The feedback controller is constructed so that the fine stage tracks the coarse stage errors and robustly designed as the“perturbation compensated sliding mode control(PCSMC)”law, a combination of slid-ing mode controller(SMC) and perturbation observer(PO). In addition, a null motion controller which regulates the fine stage at its neutral position is designed based on the“dynamic consistency”So, the overall dual-stage servo system exhibits the robust and time-optimal performance. The inherent merit and performance of the dual-stage system will be shown.

  • PDF

Robust Adaptive Control of Autonomous Robot Systems with Dynamic Friction Perturbation and Its Stability Analysis (동적마찰 섭동을 갖는 자율이동 로봇 시스템의 강인적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents a robust adaptive control method using model reference control strategy against autonomous robot systems with random friction nature. We approximate a nonlinear robot system model by means of a feedback linearization approach to derive nominal control law. We construct a Least Square (LS) based observer to estimate friction dynamics online and then represent a perturbed system model with respect to approximation error between an actual friction and its estimation. Model reference based control design is achieved to implement an auxiliary control in order for reducing control error in practice due to system perturbation. Additionally, we conduct theoretical study to demonstrate stability of the perturbed system model through Lyapunov theory. Numerical simulation is carried out for evaluating the proposed control methodology and demonstrating its superiority by comparing it to a traditional nominal control method.

Design of Robust Adaptive Controllers for Longitudinal Motion of Vehicles (직진 주행 차량의 강인 적응제어기 설계)

  • 김동헌;김응석;김홍필;양해원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.113-113
    • /
    • 2000
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the vehicle dynamics of each vehicle within the platoon. The external disturbance such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicle's acceleration. It is shown that platoon stability can be recovered in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF

Reduced-order $H_{\infty}$ controller Design of Drum-type boiler system (드럼형 보일러 시스템의 저차 $H_{\infty}$ 제어기 설계)

  • Choi, S.C.;Jo, C.H.;Seo, Jin.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.366-369
    • /
    • 1994
  • In this paper, reduced-order $H_{\infty}$ robust controller is designed for the drum-type boiler system. From the known nonlinear dynamic model, a linearized multivariable model is obtained. To reduce order of robust controller, observer-based proper $H_{\infty}$ compensator is designed. The designed controller has robust property against the influence of sensor noise, system parameter variation and model uncertainty. A good Performance of the designed controller is shown by simulation.

  • PDF