• Title/Summary/Keyword: Robust Observer

Search Result 442, Processing Time 0.022 seconds

Robust Control for Nonlinear Friction Servo System Using Fuzzy Neural Network and Robust Friction State Observer (퍼지신경망과 강인한 마찰 상태 관측기를 이용한 비선형 마찰 서보시스템에 대한 강인 제어)

  • Han, Seong-Ik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper, the position tracking control problem of the servo system with nonlinear dynamic friction is issued. The nonlinear dynamic friction contains a directly immeasurable friction state variable and the uncertainty caused by incomplete parameter modeling and its variations. In order to provide the efficient solution to these control problems, we propose the composite control scheme, which consists of the robust friction state observer, the FNN approximator and the approximation error estimator with sliding mode control. In first, the sliding mode controller and the robust friction state observer is designed to estimate the unknown internal state of the LuGre friction model. Next, the FNN estimator is adopted to approximate the unknown lumped friction uncertainty. Finally, the adaptive approximation error estimator is designed to compensate the approximation error of the FNN estimator. Some simulations and experiments on the servo system assembled with ball-screw and DC servo motor are presented. Results show the remarkable performance of the proposed control scheme. The robust friction state observer can successfully identify immeasurable friction state and the FNN estimator and adaptive approximation error estimator give the robustness to the proposed control scheme against the uncertainty of the friction parameters.

Design and Analysis of a Robust State Estimator Combining Perturbation Observer (섭동관측기를 연합한 강인 상태추정기 설계 및 해석)

  • Kwon SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.477-483
    • /
    • 2005
  • This article describes a robust state estimation method which enables to produce reliable estimates in spite of heavy perturbation including plant uncertainty and external disturbances. The main idea is to combine the standard state estimator with the perturbation observer in the estimator frame. The perturbation observer reflects equivalent quantity of plant uncertainty and external disturbances during the estimation process so that the state estimator dynamics gets as close as possible to the real plant dynamics. The robust state estimator proposed in this paper is given in a recursive discrete-time form which is very useful fur implementation purpose. In terms of the error dynamics derived for the robust state estimator, we discuss the stability issue and noise sensitivity. The effectiveness and practicality of the robust state estimator are verified through numerical examples and experimental results.

A Robust Observer Design for Nonlinear MIMO Plants using Time-Delayed Signals

  • Lee, Jeong-Wan;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-31
    • /
    • 1999
  • In this paper, a robust observer design method for nonlinear multi input multi-output(MINO) plants is presented. This method enables the extension of the time delay observer (TDO) for nonlinear SISO plants in the phase variable form to MIMO plants. The designed TDO reconstructs the states of the plant expressed in the generalized observability canonical form (GOBCF), yet requiring neither the transformation of a plant, nor the real time computation coordinates, the observer turned out to be computationally efficient and easy to design for nonlinear MIMO plants. In a simulation of a two-link manipulator with flexible joints, the control performances using TDO appeared to be similar to those using actual states and superior to those using numerical differentiation. Finally, in an experiment with a robot, it was confirmed that the TDO reconstructs the states reliability and TDO can be effectively used in a real closed-loop system.

  • PDF

Takagi-Sugeno Fuzzy Model-Based Approach to Robust Control of Boost DC-DC Converters

  • Seo, Sang-Wha;Choi, Han Ho;Kim, Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.925-934
    • /
    • 2015
  • This paper considers the robust controller design problem for a boost DC-DC converter. Based on the Takagi-Sugeno fuzzy model-based approach, a fuzzy controller as well as a fuzzy load conductance observer are designed. Sufficient conditions for the existence of the controller and the observer are derived using Linear Matrix Inequalities (LMIs). LMI parameterizations of the gain matrices are obtained. Additionally, LMI conditions for the existence of the fuzzy controller and the fuzzy load observer guaranteeing α-stability, quadratic performance are derived. The exponential stability of the augmented fuzzy observer-controller system is shown. It is also shown that the fuzzy load observer and the fuzzy controller can be designed independently. Finally, the effectiveness of the proposed method is verified via experimental and simulation results under various conditions.

A Nonlinear Reduced Order Observer Design and Its Application to Ball and Beam System (비선형 저차화 관측기의 설계기법 및 구보시스템에의 적용)

  • 조남훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.630-637
    • /
    • 2004
  • In this paper, we present a local reduced-order observer for a class of nonlinear systems that have full robust relative degree. The proposed observer utilizes the coordinate change which transforms a nonlinear system into an approximate normal form. The proposed reduce order observer is applied to a ball and beam system, and simulation results show that substantial improvement in the performance was achieved compared with the jacobian linearization observers.

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

The Robust Position Control of Induction Motors using a Binary Disturbance Observer (바이너리 외란관측기를 이용한 유도전동기의 견실한 위치제어)

  • Han, Yun-Seok;Choe, Jeong-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.4
    • /
    • pp.203-211
    • /
    • 1999
  • A control approach for the robust position control of induction motors based on the binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may exist in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, new binary disturbance observer with an integral augmented switching hyperplane is proposed. The robustness is achieved, and the continuous control is realized by employing the proposed observer without the chattering problem and the steady state error. The effectiveness of the proposed observer is confirmed by the comparative experimental results.

  • PDF

Lyapunov Based Stability Analysis and Design of A Robust High-Gain Observer (강인한 고이득 관측기 설계 및 안정성 해석)

  • Yu, Sung-Hoon;Hyun, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.2
    • /
    • pp.8-15
    • /
    • 2010
  • This paper proposes a robust high-gain observer design scheme for nonlinear systems and its stability is analyzed based on Lyapunov theory. It is assumed that their states are unmeasurable. The proposed high-gain observer has the integrator of the estimation error in dynamics. It improves the performance of high-gain observers and makes the proposed observer robust to noisy measurements, uncertainties and peaking phenomenon as well. Its stability is analyzed by the Lyapunov approach. In order to verify the effectiveness of the proposed scheme, it is applied to output feedback controllers and some comparative simulation result with the existed observer based output feedback controllers and state feedback controllers is given.

Robust Observer for Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 강인 관측기)

  • Lee, Sungryul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.253-257
    • /
    • 2013
  • This paper proposes the robust observer design for nonlinear systems with delayed output and external disturbance. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a robust observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Design of a DC Motor Current Controller Using a Sliding Mode Disturbance Observer and Controller (슬라이딩 모드 외란 관측기와 제어기를 이용한 DC 모터 전류 제어기 설계)

  • Kim, In Hyuk;Son, Young Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.417-423
    • /
    • 2016
  • Using a sliding mode controller and observer techniques, this paper presents a robust current controller for a DC motor in the presence of parametric uncertainties. One of the most important issues in the practical application of sliding mode schemes is the chattering phenomenon caused by switching actions. This paper presents a novel sliding mode controller that incorporates an integral control with a sliding mode disturbance observer to attenuate the chattering by reducing the controller/observer switching gains. The proposed sliding mode disturbance observer is designed to estimate a relatively slow varying signal in the equivalent lumped disturbance owing to system uncertainties. Combining the estimated uncertainty with the sliding mode control input, the proposed controller can achieve the control objective by using the relatively low gain of the controller. The proposed disturbance observer does not include the switching control input of the baseline sliding mode controller to reduce the observer switching gain. In the proposed approach, the integral sliding mode control is used to improve the steady state control performance. Comparative computer simulations are carried out to demonstrate the performance of the proposed method. Through the simulation results, the proposed controller realizes the robust performance with reduced current ripples.