• Title/Summary/Keyword: Robust Observer

Search Result 442, Processing Time 0.032 seconds

Nonlinear model inversion missile control with disturbance accommodating control (외란 적응 제어를 적용한 미사일 비선형 제어)

  • 조현식;김인중;김진호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1500-1503
    • /
    • 1996
  • This paper combines the disturbance accommodating control(DAC) and nonlinear model inversion control for a skid-to-turn(STT) missile. The missile autopilot may be designed to be robust with respect to a variety of uncertainties. We proposes the two step control design method. Nonlinear model inversion control is used as the main design method. Due to the model uncertainties and external disturbances, the exact nonlinear model inversion can not be achieved. DAC is designed to detect, to identify, and to compensate these uncertainties. DAC's disturbance observer is linear. Thus it is easy to implement. It does not cause the convergence problem due to coexistence between the modeling uncertainties and external disturbances. 6 DOF simulation results show that the proposed method may improve the missile tracking performance.

  • PDF

Self-Recurrent Wavelet Neural Network Based Adaptive Backstepping Control for Steering Control of an Autonomous Underwater Vehicle (수중 자율 운동체의 방향 제어를 위한 자기회귀 웨이블릿 신경회로망 기반 적응 백스테핑 제어)

  • Seo, Kyoung-Cheol;Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.406-413
    • /
    • 2007
  • This paper proposes a self-recurrent wavelet neural network(SRWNN) based adaptive backstepping control technique for the robust steering control of autonomous underwater vehicles(AUVs) with unknown model uncertainties and external disturbance. The SRWNN, which has the properties such as fast convergence and simple structure, is used as the uncertainty observer of the steering model of AUV. The adaptation laws for the weights of SRWNN and reconstruction error compensator are induced from the Lyapunov stability theorem, which are used for the on-line control of AUV. Finally, simulation results for steering control of an AUV with unknown model uncertainties and external disturbance are included to illustrate the effectiveness of the proposed method.

Receding Horizon FIR Filter and Its Square-Root Algorithm for Discrete Time-Varying Systems

  • Kim, Pyung-Soo;Kwon, Wook-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.110-115
    • /
    • 2000
  • A receding horizon FIR filter is suggested for discrete time-varying systems, combining the Kalman filter with the receding horizon strategy. The suggested filter is shown to be an FIR structure that has many good ingerent properties. The suggested filter is represented in an iterative form and also in a standard FIR form. The suggested filter turns out to be a remarkable deadbeat observer that is often robust against system and measurement noises. It is also shown that the suggested filter is an unbiased estimator irrespective of any horizon initial condition. For the amenability to parallel and systolic implementation as well as the numerical stability, a square-root algorithm for the suggested filter is presented. To evaluate performance, the suggested filter is applied to a problem of unknown input estimation and compared with the existing Kalman filter based approach.

  • PDF

Continuous Variable Structure Controller for the Tracking Control of PMSM (영구자석 동기전동기의 위치 추적 제어를 위한 연속 가변 구조 제어기)

  • Hong, Chan-Ho;Chung, Se-Kyo;Lee, Jung-Hoon;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.261-263
    • /
    • 1995
  • The continuous sliding mode controller with disturbance observer for the tracking control of permanent magnet synchronous motor(PMSM) is presented. In spite of the robust performance of variable structure control, there exists an undesirable chattering problem, which may be very harmful in some cases. To alleviate the problem, continuous sliding mode controller with continuous saturation function is proposed and also the prescribed performance can be obtained by efficient compensation of disturbance. Experimental results using 7.5 kW, 4000 rpm motor which is controlled by TMS320C30 DSP, are shown to demonstrate the usefulness of the proposed algorithm.

  • PDF

Adaptive Fuzzy Control with Reduced Complexity for Robot Manipulators (구조적 복잡성을 감소시킨 로봇 머니퓰레이터 적응 퍼지 제어)

  • Jang, Jin-Su;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1775-1776
    • /
    • 2008
  • This paper presents a adaptive fuzzy control suitable for motion control of multi-link robot manipulators with uncertainties. When joint velocities are available, full state adaptive fuzzy feedback control is designed to ensure the stability of the closed loop dynamic. If the joint velocities are not measurable, an observer is introduced and an adaptive output feedback control is designed based on the estimated velocities. To reduce the number of fuzzy rules of the fuzzy controller, we consider the properties of robot dynamics and the decomposition of the unknown input gain matrix. The proposed controller is robust against uncertainties and external disturbances. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

  • PDF

A New Multimachine Robust Based Anti-skid Control System for High Performance Electric Vehicle

  • Hartani, Kada;Draou, Azeddine
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.214-230
    • /
    • 2014
  • This paper presents a high performance sensor less control four motorized wheels for electric vehicle. Firstly, we applied a sensor less master-slave DTC based control to both the two in wheel motors by using sliding mode observer for its quick response and its high reliability in electric vehicle application. Secondly, to overcome the possible loss of adherence of one of the four wheels which is likely to destabilize the vehicle a solution is proposed in this paper. Thirdly, a Fuzzy logic anti-skid control structure well adapted to the non-linear system is used to overcome the main problem of power train system in the wheel road adhesion characteristic. Various Simulation results have been include in this paper to show that the proposed control strategy can prevent vehicle sliding and show good vehicle stability on a curved path.

Rotor flux Observer Using Robust Support Vector Regression for Field Oriented Induction Mmotor Drives (유도전동기 벡터제어를 위한 Support Vector Regression을 이용한 회전자자속 추정기)

  • Han Dong Chang;Back Woon Jae;Kim Sung Rag;Kim Han Kil;Lee Suk Gyu;Park Jung IL
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.70-78
    • /
    • 2005
  • In this paper, a novel rotor flux estimation method of an induction motor using support vector regression(SVR) is presented. Two well-known different flux models with respect to voltage and current are necessary to estimate the rotor flux of an induction motor. Training of SVR which the theory of the SVR algorithm leads to a quadratic programming(QP) problem. The proposed SVR rotor flux estimator guarantees the improvement of performance in the transient and steady state in spite of parameter variation circumstance. The validity and the usefulness of proposed algorithm are throughly verified through numerical simulation.

Design of Robust TDOF Controller of Induction Motor for Variation of Rotor Resistance (회전자 저항 변동에 강인한 유도전동기 2-자유도 제어기 설계)

  • Yang, Lee-Woo;Kim, Sang-Uk;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.357-359
    • /
    • 1994
  • This paper consists of the vector control of three phase induction motors which has robustness against disturbances and parameter variations by the TDOF (Two Degree Of Freedom) theory. Using the TDOF theory, induction motor is robustly controlled for resistance variations and disturbances. Adaptive observer is used for the purpose of estimating the stator fluxes, the stator currents, and the parameters. The proposed control netted is verified by computer simulations.

  • PDF

Nonlinear Model-Based Disturbance Compensation for a Two-Wheeled Balancing Mobile Robot (이륜 밸런싱 로봇에 대한 비선형 모델 기반 외란보상 기법)

  • Yu, Jaerim;Kim, Yongkuk;Kwon, SangJoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.826-832
    • /
    • 2016
  • A two-wheeled balancing mobile robot (TWBMR) has the characteristics of both nonlinear and underactuated system. In this paper, the disturbances acting on a TWBMR are classified into body disturbance and wheel disturbance. Additionally, we describe a nonlinear disturbance observer, which is suitable as a single input multi-output (SIMO) system for the longitudinal motion of TWBMR. Finally, we propose a reasonable disturbance compensation technique that combines the indirect reference input of equilibrium point and the direct torque compensation input. Simulations and experimental results show that the proposed disturbance compensation method is an effective way to achieve robust postural stability, specifically on inclined terrains.

Hovering Flight Control for a Model Helicopter using the Minimal-Order LQG/LTR Technique (Minimal Order LQG/LTR 기법에 의한 모형헬리콥터의 정지비행 자세제어)

  • Yang, J.S.;Han, K.H.;Lee, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.457-459
    • /
    • 1998
  • This paper presents a 3-DOF hovering flight controller for a model helicopter using the minimal order LQG/LTR technique. A model helicopter is an unstable multi-input multi-output nonlinear system strongly exposed to disturbances, so a robust multi-variable control theory should be applied to control it. The minimal order LQG/LTR technique which uses a reduced-order observer in the LTR procedure is used to design the controller. Performances for the 3-DOF hovering flight controller are evaluated through computer simulations.

  • PDF