• Title/Summary/Keyword: Robust Observer

Search Result 445, Processing Time 0.027 seconds

Robust Estimation Algorithm for Switching Signal and State of Discrete-time Switched Linear Systems (이산 시간 선형 스위치드 시스템의 스위칭 신호 및 상태에 대한 강인한 추정 알고리즘)

  • Lee, Chanhwa;Shim, Hyungbo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.214-221
    • /
    • 2015
  • In this paper, we present robust estimation and detection algorithms for discrete-time switched linear systems whose output measurements are corrupted by noises. First, a mode estimation algorithm is proposed based on the minimum distance criterion. Then, state variables are also observed under the active mode estimate. Second, a detection algorithm is constructed to detect the mode switching of the switched system. With the boundedness of measurement noise, the proposed estimation algorithm returns the exact active mode and approximate state information of the switched system. In addition, the detection algorithm can detect the switching time within a pre-determined time interval after the actual switching occurred.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

Trajectory control of direct drive robot using two-degrees-of-freedom compensator

  • Shin, Jeong-Ho;Fujiune, Kenji;Suzuki, Tatsuya;Okuma, Shigeru;Yamada, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.422-427
    • /
    • 1994
  • In this paper, we propose a new design approach of a two-degrees-of-freedom compensator which assures the robust stability. First of all, we clarify the internal structure of the generalized two-degrees-of-freedom compensator. By adopting this structure, we can make a bridge between the generalized controller and the disturbance observer based controller, Secondly, based on the clarified structure we derive a robust stability condition, and propose a design algorithm of free parameter taking the condition into account. The proposed design algorithm is easy to implement and, as a result, we obtain lower order free parameter then that of the conventional design algorithm.. Thirdly, we show by adopting an appropriate coprime factorization that the clarified structure can also be regarded as an extended version of the conventional PID compensator. Finally, we apply the proposed algorithm to a three-degrees-of freedom direct drive robot, and show some experimental results to verify the effectiveness of the proposed algorithm.

  • PDF

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

Force Control of One Pair of 6-Link Electro-Hydraulic Manipulators (Application to the Approaching of a Bolt and the Wrenching of a Nut Tasks) (한쌍의 6축 전기유압 매니퓰레이터를 이용한 힘 제어 (너트의 장착 및 체결 작업에의 응용))

  • Ahn, Kyung-Kwan;Yang, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the automatic assembly tasks using hydraulic manipulators. In this manuscript, we applied a compliance control, which is based on the position control by a disturbance observer for our manipulator system. A reference trajectory modification method is proposed in order to achieve accurate force control even though the stiffness and the position of the environment change. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved under various environment conditions. The proposed force control algorithm is applied to the approaching of bolt and the wrenching of nut tasks as one typical task in the maintenance work of live power electric line and is experimentally confirmed very effective for the task.

A study on the design of a path tracker and depth controller for autonomous underwater vehicles (무인 수중운동체의 경로추적기와 심도제어기 설계 연구)

  • Yang, Seung-Yun;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 1998
  • In this paper, a robust path tracker and depth controller of Autonomous Underwater Vehicle based on sliding mode control is presented. We have also designed augmented equivalent control inputs by analyzing the sliding mode with the reaching mode. This can enhance the reaching rate, and improve chattering problems, that is, noise caused by the control plane actuator of the vehicle, which is one of the problems that occur when sliding mode control is used. Also to resolve the steady state error generated in the path tracker under current effect, a modified sliding plane is constructed. Also a redesigned sliding plane and control input using transformation matrix is proposed to do easy design of MIMO depth controller. For state variables that cannot be measured directly, reduced order sliding mode control is used to design an observer. The performance of designed path tracker and depth controller is investigated by computer simulation. The results show that the proposed control system has robust performance to parameter variation, modelling error and disturbance.

  • PDF

Design of a Robust Position Tracking Controller with Sliding Mode for a 6-DOF Micropositioning Stage (6자유도 정밀 스테이지의 추종제어를 위한 슬라이딩 모드 제어기 설계)

  • Moon, Jun-Hee;Lee, Bong-Gu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • As high precision industries such as semiconductor, TFT-LCD manufacturing and MEMS continue to grow, the demand for higher DOF precision stages has been increasing. In general, the stages should accommodate a prescribed range of payloads in order to position various precision manufacturing/inspection instruments. Therefore a nonlinear controller using sliding motion is developed, which bears mass perturbation and makes the upper plate of the stage move in 6 DOF. For the application of the nonlinear control, an observer is also developed based on expected noise covariance. To eliminate the steady state error of step response, integral terms are inserted into the state-space model. The linear term of the controller is designed using optimization scheme in which parameters can be weighted according to their physical significance, whereas the nonlinear term of the controller is designed using trial and error method. A comprehensive simulation study proves that the designed controller is robust against mass perturbation and completely eliminates steady state errors.

Robust Digital Speed Control Scheme of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 강인한 디지털 속도 제어기법)

  • Jung, Jin-Woo;Choi, Young-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • This paper proposes a robust digital speed regulator for a surface-mounted permanent magnet synchronous motor(SPMSM). The proposed speed controller uses a simple digital load disturbance resistance scheme which does not require a load torque observer, so it can be easily and simply implemented without degrading the control performance. To validate the effectiveness of the proposed control algorithm, experimental results as well as simulation results are shown under motor parameter variations using a prototype SPMSM driving system. Finally, it was confirmed that the proposed method can precisely regulate the speed of the SPMSM.

High-Performance Tracking Controller Design for Rotary Motion Control System (회전운동 제어시스템을 위한 고성능 추적제어기의 설계)

  • Kim, Youngduk;Park, Su Hyeon;Ryu, Seonghyun;Song, Chul Ki;Lee, Ho Seong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.43-51
    • /
    • 2021
  • A robust tracking controller design was developed for a rotary motion control system. The friction force versus the angular velocity was measured and modeled as a combination of linear and nonlinear components. By adding a model-based friction compensator to a nominal proportional-integral-derivative controller, it was possible to build a simulated control system model that agreed well with the experimental results. A zero-phase error tracking controller was selected as the feedforward tracking controller and implemented based on the estimated closed-loop transfer function. To provide robustness against external disturbances and modeling uncertainties, a disturbance observer was added in the position feedback loop. The performance improvement of the overall tracking controller structure was verified through simulations and experiments.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF