• Title/Summary/Keyword: Robust $H{\infty}$ controller

Search Result 359, Processing Time 0.034 seconds

Optimal Design of Robust Quantitative Feedback Controllers Using Linear Programming and Genetic Algorithms

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.428-432
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of most effective methods of robust controller design and can be considered as a suitable method for systems with parametric uncertainties. Particularly it allows us to obtain controllers less conservative than other methods like $H_{\infty}$ and ${\mu}$-synthesis. In QFT method, we transform all the uncertainties and desired specifications to some boundaries in Nichols chart and then we have to find the nominal loop transfer function such that satisfies the boundaries and has the minimum high frequency gain. The major drawback of the QFT method is that there is no effective and useful method for finding this nominal loop transfer function. The usual approach to this problem involves loop-shaping in the Nichols chart by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. In this paper, we approach the automatic QFT loop-shaping problem by using an algorithm involving Linear Programming (LP) techniques and Genetic Algorithm (GA).

  • PDF

AN LMI APPROACH TO AUTOMATIC LOOP-SHAPING OF QFT CONTROLLERS

  • Bokharaie, Vaheed S.;Khaki-Sedigh, Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.433-437
    • /
    • 2003
  • Quantitative Feedback Theory (QFT) is one of effective methods of robust controller design. In QFT design we can considers the phase information of the perturbed plant so it is less conservative than $H_{\infty}$ and ${\mu}$-synthesis methods and as be shown, it is more transparent than the sensitivity reduction methods mentioned . In this paper we want to overcome the major drawback of QFT method which is lack of an automatic method for loop-shaping step of the method so we focus on the following problem: Given a nominal plant and QFT bounds, synthesize a controller that achieves closed-loop stability and satisfies the QFT boundaries. The usual approach to this problem involves loop-shaping in the frequency domain by manipulating the poles and zeros of the nominal loop transfer function. This process now aided by recently developed computer aided design tools proceeds by trial and error and its success often depends heavily on the experience of the loop-shaper. Thus for the novice and First time QFT user, there is a genuine need for an automatic loop-shaping tool to generate a first-cut solution. Clearly such an automatic process must involve some sort of optimization, and while recent results on convex optimization have found fruitful applications in other areas of control theory we have tried to use LMI theory for automating the loop-shaping step of QFT design.

  • PDF

H Controller Design of Flexible Space Structure with the Uncertainty of Damping Ratio (감쇠비 불확실성을 고려한 유연구조물의 H 제어기 설계)

  • Chae, Jang-Su;Park, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.602-608
    • /
    • 2002
  • The flexible structure like solar array and antenna in spacecraft shows very sensitive responses to the inner or outer disturbance and noise. And the spacecraft becomes more complex and larger as it has various mission and role. But since the spacecraft need to have the limited mass, the thin and light material should be selected and this necessity induces the decrease d natural frequency and structural stiffness. It reduces the ability of adapting to the disturbance and induces the structural unstability. Certainly, the disturbance does not only make the structural unstability, but also give the bad effect to the precise attitude control. So it is necessary to control the vibration in the space. In this paper, the flexible structure control modeling with piezo sensor and piezo actuator is developed. The model uncertainty of damping ratio is overcome by robust control. The system equation is induced by the finite element method.

A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed (선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구)

  • Kim, Young-Bok;Chea, Gyu-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle (횡방향 거동 특성을 고려한 부하모사 시스템 해석)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.621-626
    • /
    • 2019
  • The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

Design of Sliding Mode Fuzzy Controller for Vibration Reduction of Large Structures (대형구조물의 진동 감소를 위한 슬라이딩 모드 퍼지 제어기의 설계)

  • 윤정방;김상범
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.63-74
    • /
    • 1999
  • A sliding mode fuzzy control (SMFC) algorithm is presented for vibration of large structures. Rule-base of the fuzzy inference engine is constructed based on the sliding mode control, which is one of the nonlinear control algorithms. Fuzziness of the controller makes the control system robust against the uncertainties in the system parameters and the input excitation. Non-linearity of the control rule makes the controller more effective than linear controllers. Design procedure based on the present fuzzy control is more convenient than those of the conventional algorithms based on complex mathematical analysis, such as linear quadratic regulator and sliding mode control(SMC). Robustness of presented controller is illustrated by examining the loop transfer function. For verification of the present algorithm, a numerical study is carried out on the benchmark problem initiated by the ASCE Committee on Structural Control. To achieve a high level of realism, various aspects are considered such as actuator-structure interaction, modeling error, sensor noise, actuator time delay, precision of the A/D and D/A converters, magnitude of control force, and order of control model. Performance of the SMFC is examined in comparison with those of other control algorithms such as $H_{mixed 2/{\infty}}$ optimal polynomial control, neural networks control, and SMC, which were reported by other researchers. The results indicate that the present SMFC is an efficient and attractive control method, since the vibration responses of the structure can be reduced very effectively and the design procedure is simple and convenient.

  • PDF

A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach (로프 길이변화를 고려한 크레인의 흔들림 제어에 관한 연구: Gain-Scheduling 기법에 의한 제어기 설계)

  • Kim, Y.W.;Kim, Y.B.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.58-66
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

A Study on the Sway Control of a Container Crane with Varying Rope Length Based on Gain-Scheduling Approach (로프 길이 변화를 고려한 크레인의 흔들림 제어에 관한 연구;Gain-Scheduling 기법에 의한 제어기 설계)

  • Kim, Y.W.;Kim, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.631-636
    • /
    • 2004
  • The sway motion control problem of a container hanging on the trolly is considered in the paper. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system in which a small auxiliary mass is installed on the spreader made by ourselves. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. Especially, we apply the $H_{\infty}$ based gain-scheduling control technique the anti-sway control system design problem of the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the experiment result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

A Development of Anti-sway System for Real Application: Measurement and Control of Crane Motions Using Camera (실용화를 고려한 Anti-Sway 시스템 구축: 카메라를 이용한 크레인 운동 계측 및 제어)

  • Kawai, Hideki;Kim, Young-Bok;Choe, Yong-Woon;Yang, Joo-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.90-96
    • /
    • 2008
  • In general, the swing motions of a crane are controlled and suppressed by controlling the trolley motion. In many of our previous studies, we suggested a new type of anti-sway control system for a crane. In this proposed control system, a small auxiliary mass (moving-mass) is installed on the spreader and moving this auxiliary mass controls tire swing motion. The actuator reaction against the auxiliary mass applies inertial control forces to the container in order to reduce the swing motion in the desired manner. However, measuring systems based on a laser sensor or other means are not veryuseful in real-worldapplications. So, in this paper, animage sensor is used to measure the motions of the spreader and the measured data are fed back to the controller in real time. The applied image processing technique is a kind of robust template matching method called Vector Code Correlation (VCC), which was devised to consider real environmental conditions. The H $\infty$ based control technique is applied to suppress the swing motion of the crane. Experimental results showed that the proposed measurement and control system based on an image sensor is useful and robust to disturbances.