• Title/Summary/Keyword: Robots

Search Result 3,117, Processing Time 0.035 seconds

Bluetooth Network for Distributed Autonomous Robotic System

  • Whang, Se-Hee;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2346-2349
    • /
    • 2005
  • Distributed Autonomous Robotic System (DARS) is defined as a system that independent autonomous robots in the restricted environments infer their status from pre-assigned conditions and operate their jobs through the cooperation with each other. In the DARS, a robot contains sensor part to percept the situation around themselves, communication part to exchange information, and actuator part to do a work. Especially, in order to cooperate with other robots, communicating with other robots is one of the essential elements. Because Bluetooth has many advantages such as low power consumption, small size module package, and various standard protocols, Bluetooth is rated as one of the efficient communicating technologies which can apply to small-sized robot system. In this paper, we will develop Bluetooth communicating system for autonomous robots such as DARS robots. For this purpose, The Bluetooth communication system must have several features. The first, this system should be separated from other robot parts and operate spontaneously and independently. In other words, this communication system should have the ability to organize and maintain and reorganize a network scheme. The next, this system had better support any kinds of standard interfaces in order to guarantee flexible applicability to other embedded system. We will discuss how to construct and what kind of procedure to develop the network system.

  • PDF

Co-Operative Strategy for an Interactive Robot Soccer System by Reinforcement Learning Method

  • Kim, Hyoung-Rock;Hwang, Jung-Hoon;Kwon, Dong-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.236-242
    • /
    • 2003
  • This paper presents a cooperation strategy between a human operator and autonomous robots for an interactive robot soccer game, The interactive robot soccer game has been developed to allow humans to join into the game dynamically and reinforce entertainment characteristics. In order to make these games more interesting, a cooperation strategy between humans and autonomous robots on a team is very important. Strategies can be pre-programmed or learned by robots themselves with learning or evolving algorithms. Since the robot soccer system is hard to model and its environment changes dynamically, it is very difficult to pre-program cooperation strategies between robot agents. Q-learning - one of the most representative reinforcement learning methods - is shown to be effective for solving problems dynamically without explicit knowledge of the system. Therefore, in our research, a Q-learning based learning method has been utilized. Prior to utilizing Q-teaming, state variables describing the game situation and actions' sets of robots have been defined. After the learning process, the human operator could play the game more easily. To evaluate the usefulness of the proposed strategy, some simulations and games have been carried out.

Development of a WPAN-based Self-positioning System for Indoor Flying Robots (실내 비행 로봇을 위한 WPAN 기반 자가 측위 시스템 개발)

  • Lim, Jeong-Min;Jeong, Won-Min;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.490-495
    • /
    • 2015
  • As flying robots are becoming popular, there are increased needs to use themforsuch purposes as parcel delivery, serving in restaurants, and stage performances. To control flying robots such as quad copters, localization is essential. In order to properly position flying robots, many techniques are in development, including IR (infra-red)-based systemswhich catch markers on a flying robot in order that it can position itself. However, this technique demonstrates only short coverage. Furthermore, localization from inertial sensors diverges as time passes. For this reason, this paper suggests a TWR (two-way ranging) based positioning technique. Despite the weaknesses in currently available TWR system, this paper suggests a self-positioning and outlier detection technique in order to provide reliable position information with a faster update rate. The self-positioning system sends a shorter message which reduces wireless traffic. By detecting and removing outlier measurements, a positioning result with better accuracy is acquired. Finally, this paper shows that the suggesting system detects outlierssequentially from less than half the number of anchors in localization system according to the degree of outlier in measurement and the noise level. By performing an outlier algorithm, better positioning accuracy is acquired as shown in the experimental result.

Literature Review of Robots Used for the Rehabilitation of Children with Autistic Spectrum Disorder (자폐스펙트럼장애 아동의 재활을 위한 로봇 관련 문헌분석)

  • Choi, E.Y.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.4
    • /
    • pp.265-273
    • /
    • 2015
  • Children with autistic spectrum disorder(ASD) have a strength in visual process and systemizing, and they show interest toward things and machines. Therefore, robots have been suggested as a useful tool for the rehabilitation of the children with ASD. A robot can attract children's interest and attention, and it can provide simplified social stimulus. A robot can be applied repetitively, and programmed for the special needs of an individual child. In this study, we review literature related to the use of robots for the rehabilitation of children with ASD. For this purpose, related literature was searched with the keywords of autism and robot. We selected eleven domestic papers, and analyzed their contents to identify robots, stimulus of robots, experiment process and dependent variables.

  • PDF

Seamless Switching in the Implementation of the Adjustable Autonomy of Human-Robot Teams (인간-로봇 팀의 조절가능 자율도 구현에서 무결절 전환)

  • Cho, Hye-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.65-71
    • /
    • 2007
  • Adjustable autonomy architecture provides various ways for a human operator to participate as a member of a human-robot team in improving the performance of the team by resolving issues that the robots cannot deal with or performing tasks that the robots alone would unable to do. According to the level of involvement of the human operator, the robots have to adjust their level of autonomy and, in consequence, the operation mode of the overall system shifts. This paper deals with the implementation issues of seamless switching when the level of autonomy of the human-robot team shifts from one level to another. Especially, we focus on developing reliable methods for monitoring the task progress and maximizing the system flexibility by coping with the detailed differences between humans and robots in their characteristics of motions and their choices of positions, paths, and sequences of sub-goals to achieve a given task. To test and motivate the proposed methods, we have assembled three heterogeneous robots which work together to dock both ends of a suspended beam into stanchions.

Online Control of DC Motors Using Fuzzy Logic Controller for Remote Operated Robots

  • Prema, K.;Kumar, N. Senthil;Dash, Subhransu Sekhar
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.352-362
    • /
    • 2014
  • In this paper, a fuzzy logic controller is designed for a DC motor which can be used for navigation control of mobile robots. These mobile robots can be used for agricultural, defense and assorted social applications. The robots used in these fields can reduce manpower, save human life and can be operated using remote control from a distant place. The developed fuzzy logic controller is used to control navigation speed and steering angle according to the desired reference position. Differential drive is used to control the steering angle and the speed of the robot. Two DC motors are connected with the rear wheels of the robot. They are controlled by a fuzzy logic controller to offer accurate steering angle and the driving speed of the robot. Its location is monitored using GPS (Global Positioning System) on a real time basis. IR sensors in the robot detect obstacles around the robot. The designed fuzzy logic controller has been implemented in a robot, which depicts that the robot could avoid obstacle as well as perform its operation efficiently with remote online control.

Power System and Drive-Train for Omni-Directional Autonomous Mobile Robots with Multiple Energy Storage Units

  • Ghaderi, Ahmad;Nassiraei, Amir A.F;Sanada, Atsushi;Ishii, Kazuo;Godler, Ivan
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.291-300
    • /
    • 2008
  • In this paper power system and drive-train for omni-directional autonomous mobile robots with multiple energy storage units are presented. Because in proposed system, which is implemented in soccer robots, the ability of power flow control from of multiple separated energy storage units and speed control for each motor are combined, these robots can be derived by more than one power source. This capability, allow robot to diversify its energy source by employing hybrid power sources. In this research Lithium ion polymer batteries have been used for main and auxiliary energy storage units because of their high power and energy densities. And to protect them against deep discharge, over current and short circuit, a protection circuit was designed. The other parts of our robot power system are DC-DC converters and kicker circuit. The simulation and experimental results show proposed scheme and extracted equations are valid and energy management and speed control can be achieved properly using this method. The filed experiments show robot mobility functions to perform the requested motion is enough and it has a high maneuverability in the field.

TWR based Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application (재난 구조용 다중 로봇을 위한 GNSS 음영지역에서의 TWR 기반 협업 측위 기술)

  • Lee, Chang-Eun;Sung, Tae-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2016
  • For a practical mobile robot team such as carrying out a search and rescue mission in a disaster area, the localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a global positioning system (GPS) is unavailable. The proposed architecture supports localizing robots seamlessly by finding their relative locations while moving from a global outdoor environment to a local indoor position. The proposed schemes use a cooperative positioning system (CPS) based on the two-way ranging (TWR) technique. In the proposed TWR-based CPS, each non-localized mobile robot act as tag, and finds its position using bilateral range measurements of all localized mobile robots. The localized mobile robots act as anchors, and support the localization of mobile robots in the GPS-shadow region such as an indoor environment. As a tag localizes its position with anchors, the position error of the anchor propagates to the tag, and the position error of the tag accumulates the position errors of the anchor. To minimize the effect of error propagation, this paper suggests the new scheme of full-mesh based CPS for improving the position accuracy. The proposed schemes assuring localization were validated through experiment results.

Automation of Cell Production System for Cellular Phones based on Multi-dual-arm Robots (복수의 양팔로봇을 적용한 휴대폰 셀 생산시스템의 자동화)

  • Do, Hyun Min;Kim, Doo Hyeong;Kyung, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.580-589
    • /
    • 2014
  • Demands for automation in the cell production process of IT products are becoming increasingly sophisticated. In particular, the dual-arm robot has drawn attention as a solution because it has a flexibility and works similarly to humans. In this paper, we propose an automation system for cellular phone packing processes using two dual-arm robots. Applied robots are designed with specifications to meet the requirements of cellular phone packing jobs. In addition, a robotic cell production system is proposed by applying a method of task allocation for efficient packing of cellular phones. Specifically, a task is assigned to reduce takt-time and to avoid collision between two robots. Finally, we discuss some experimental results that include the packing job of five unit boxes with seven kinds of accessories.

Examples of Art Performing with Industrial Dual-arm Robots (산업용 양팔로봇을 이용한 공연 예술 구현 사례)

  • Choi, Taeyong;Do, Hyunmin;Park, Dongil;Park, Chanhun;Kyung, Jinho;Kim, Doohyung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • In this article art performing applications of industrial dual-arm robots are introduced. It was real collaboration among robot researchers and artist. Artist designed the performance to use dual-arm robot. Robot researchers collaborated with artist by providing robotic constraints and configuring robot motion. Two art performances were configured with two industrial dual-arm robots. In both performance robots carry objects to be used as moving screens. Both performances rely on the high power and high precision of robots. In addition human-like appearance make those performances be familiar to public.