• 제목/요약/키워드: Robotics Simulation

검색결과 2,571건 처리시간 0.033초

물체형상 기반 로봇 팔 제어 (Robot Arm Control using Optimized Pinch Grasp Posture Based on Object Shape)

  • 펠릭스;오용환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1929-1930
    • /
    • 2006
  • Human like robot arm posture for grasping by considering the shape of the target object is quite a challenge in the field of robotics. In this paper, an optimized grasp posture with respect to the shape of the object considering the wrist joint angle and elbow elevation angle, in order to verify that the grasp posture is human like has been proposed. Given a target object, the candidates for grasp are computed by the method described in this paper. For each candidate, the closed loop inverse kinematics has been solved for the corresponding hand position and orientation. From the obtained joint angles through inverse kinematics, the elbow elevation angle has been computed and compared with the elbow elevation angle obtained through human movement data by the characteristic equation. After considering all the candidates, the hand position and orientation with minimum wrist joint and difference in elbow elevation angles has been utilized as the optimized grasp posture. Simulation results are presented.

  • PDF

Telerobotic operations of structurally flexible, long-reach manipulators

  • Kwon, Dong-Soo;Hwang, Dong-Hwan;Badcock, Scott-M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.825-829
    • /
    • 1993
  • As a part of the Department of Energy's Environmental Restoration and Waste Management Program, long-reach manipulators are being considered for the retrieval of waste from large storage tanks. Long-reach manipulators may have characteristics significantly different from those of typical industrial robots because of the flexibility of long links needed to cover the large workspace. To avoid structural vibrations during operation, control algorithms employing various types of shaping filters were investigated. A new approach that uses imbedded simulation was developed and compared with others. In the new approach, generation of joint trajectories considering link flexibility was also investigated.

  • PDF

Cartesian Space Nonlinear PD Control for the Multi-tink Flexible Manipulators

  • Cheong, Joono;Chung, Wankyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.21-24
    • /
    • 1999
  • There-have been many control strategies for the enact joint position tracking of flexible manipulators, but direct cartesian space tracking control methods an not developed well. In this paper, we propose a PD control method based on the cartesian error in the end point trajectory tracking. the proposed controller is composed of PD control combined with nonlinear saturation term hut has a very simple form. the effect of this term is continuous suppression of vibration which is induced by the coupling of rigid motion. This control works both on the regulation and on the tracking cases. The performance and validity of this control method is shown by simulation examples.

  • PDF

Impact Reduction for Unknown Environment Using Kinematic Redundancy

  • Kim, Jinhyun;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.25-28
    • /
    • 1999
  • In this article, a new performance index is proposed to re-duce the collision impulsive force by controlling the null motion of redundant manipulators. First, we define the normalized impact ellipsoid in the viewpoint of instantaneous velocity change. Then, we propose a new impact performance index based on velocity direction for null motion to reduce initial impulsive effects. It gives some advantage for the case of unknown environment. The optimization of this index is that the successional impact forces are reduced. The performance of the proposed index is demonstrated by simulation study.

  • PDF

Passive Dynamic Walking : Design of Internal Parameters

  • Sung, Sang-Hak;Youngil Youm;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.446-446
    • /
    • 2000
  • This paper presents the design of a passive biped walking robot based on limit cycle analysis. By using numerical analysis and experiment, we identify better design criterion for biped walking robot. In designing robot parameters we apply global search method to find limit cycles for given robot parameters and ground angle. Internal parameter variation changes limit cycle behavior, total energy, strides, etc and the characteristics of walking is analyzed by simulation and experiments.

  • PDF

Analysis of the Motion of a Cart with an Inverted Flexible Beam and a Concentrated Tip Mass

  • Park, Sangdeok;Wankyun Chung;Youngil Youm;Lee, Jaewon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.367-372
    • /
    • 1998
  • In this paper, the mathematical model of a cut with an inverted flexible beam and a concentrated tip mass was derived. The characteristic equation for calculating the natural frequencies of the cart-beam-mass system was obtained and the motion of the system was analyzed through unconstrained modal analysis. A good positioning response of the cart without excessive vibrational motion of the tip mass could be obtained through numerical simulation using PID controller with the feedback of both the position of the cart and the deflection of the beam.

  • PDF

전자석 내장형 소프트 카테터 로봇 형상 예측 방법 (Shape Prediction Method for Electromagnet-Embedded Soft Catheter Robot)

  • 이상현;손동훈
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.39-44
    • /
    • 2024
  • This study introduces a novel method for predicting the shape of soft catheter robots embedded with electromagnets. As an advancement in the realm of soft robotics, these catheter robots are crafted from flexible and pliable materials, ensuring enhanced safety and adaptability during interactions with human tissues. Given the pivotal role of catheters in minimally invasive surgeries (MIS), our design stands out by facilitating active control over the orientation and intensity of the inbuilt electromagnets. This ensures precise targeting and manipulation of the catheter segments. The research encompasses a comprehensive breakdown of the magnetic modeling, tracking algorithms, experimental layout, and analytical techniques. Both simulation and experimental results validate the efficacy of our method, underscoring its potential to augment accuracy in MIS and revolutionize healthcare-oriented soft robotics.

분포형 강화학습을 활용한 맵리스 네비게이션 (Mapless Navigation with Distributional Reinforcement Learning)

  • 짠 반 마잉;김곤우
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.92-97
    • /
    • 2024
  • This paper provides a study of distributional perspective on reinforcement learning for application in mobile robot navigation. Mapless navigation algorithms based on deep reinforcement learning are proven to promising performance and high applicability. The trial-and-error simulations in virtual environments are encouraged to implement autonomous navigation due to expensive real-life interactions. Nevertheless, applying the deep reinforcement learning model in real tasks is challenging due to dissimilar data collection between virtual simulation and the physical world, leading to high-risk manners and high collision rate. In this paper, we present distributional reinforcement learning architecture for mapless navigation of mobile robot that adapt the uncertainty of environmental change. The experimental results indicate the superior performance of distributional soft actor critic compared to conventional methods.

속도오차 초기화를 이용한 관성항법장치 교정기법의 구현 (An implementation of INS calibration technique using the velocity initialization)

  • 박정화;김천중;신용진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1679-1683
    • /
    • 1997
  • In this paper a linear Kalman filter for calibration of gimballed inertial navigation system(GINS) is designed and its performace is analyzed through the simulation with a real navigation data. Simulation results show that the proposed Kalman filter gives a good performance to calibrate the sensor errors.

  • PDF

분리공정의 모사를 위한 차수감소모델 (Reduced order models for separation process simulation)

  • 최호석;조영상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.360-366
    • /
    • 1989
  • Reduced order steady state models for separation columns are developed. The accuracy and efficiency of the reduced order models are also demonstrated by comparing the simulation results obtained using the reduced order models with rigorous tray by tray calculations.

  • PDF