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Abstract

There have been many control strategies for the ezact
joint position tracking of flexible manipulators, but direct
cartesian space tracking control methods are not developed
well. In this paper, we propose a PD control method based
on the cartesian error in the end point trajectory tracking.
The proposed conroller is composed of PD control combined
with nonlinear saturation term but has a very simple form.
The effect of this term is continuous suppression of vibra-
tion which is induced by the coupling of rigid motion. This
control works both on the regulation and on the tracking
cases. The performance and validity of this control method
is shown by simulation examples.

1 Introduction

In the past few decades, numerous attempts have been
made on the control of structurally flexible manipulators
due to the requirements on the light weight arm. Un-
fortunately, such flexible manipulators always incorporate
vibration which limits the global performance.

Various control methods have been tested for the con-
trol of flexible manipulators since the initial experiments
using linear quadratic approach by Cannon{4]. The in-
verse dynamic control [2, 3, 8, 9] or similarly inversion
technique [7, 11, 15] was studied to exactly follow a pre-
planned output trajectory using feedforward joint torque.
Naturally, the inverse dynamics shows unstable nature due
to the nonminimum phase property in the nonlinear set-
ting. To cope with this problem, plant was divided into
stable and unstable parts and unstable parts are properly
handled to give a stable joint solution trajectory in the
time domain|[3, 9] or in the frequency domain(8]. Iterative
feedforward torque calculation using virtual link was done
by Asada[2]. Another technique is the feedback of slight
modified output[5, 11, 14] which makes the closed loop sys-
tem stable or passive. Since such feedback information is
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not the exact output, there is a little performance degra-
dation. The stability of this feedback was verified by inves-
tigating the eigenvalues of zero dynamics. In [5], Damaren
showed the nonlinear passivity result between the u tip
rate and input torque considering the special dynamic and
kinematic conditions. The singular perturbation approach
was also studied in [10, 13].

Most of works mentioned above are mainly focused on
the joint based control schemes and only a few works that
challenge in the direct cartesian space methods can be
listed[5, 14]. This may come from the fact that the estab-
lishment of cartesian space dynamics is very hard. Also,
even if we can obtain the cartesian dynamics, the direct
design of stable cartesian control is nearly impossible due
to the cartesian force coupling by Jacobian relation. In
this paper, we will present a nonlinear PD type cartesian
space set point and trajectory tracking controller combin-
ing vibration suppression scheme without loosing colloca-
tion feedback. Since this control does not require any dy-
namic inversion or iterative schemes, the implementation
is so simple.

This paper is organized as follows; in section 2, some
definitions and problems are given and regulation and
tracking control is proposed in section 3. Conclusion is
in section 4.

2 Problem Statement

Fig. 1: Coordinate system of flexible link

Fig.1 shows the schematics of flexible link coordinate
system for the successive two links. Using separation of



variables and truncation of higher order terms, the vibra-
tion can be written as
[o ] my
Gi(r,t) =) dip(@uvin(t) = Y_din(@uin(t), (1)
i=1

i=1

where ¢(z) and v(t) are mode shape and time function,
respectively, and the index ¢ and k denote link number
and mode number. Then the generalized coordinate of
this system can be constructed as

T
G=[01-0n v11- Vi - Omma]” = [oT ,,T] :

where @ € R* and v € R™=2=1™) are rigid joint an-
gle and flexible variable, respectively. According to the
kinematic relation, we can write as

z=h(0,v)=h(q), ==Jeb+J,v=Jgq,
E=Jg0+Te0+ T o +Tuo=Jg+Jq

where £ € R™ and J € R"X(®*+™) jre the cartesian posi-
tion and kinematic Jacobian, respectively. According to
Lagrangian dynamic formalism, the equations of motion
can be compactly written as

M(q)i+ C(q,9)q + Dqg+ Kq+G(q) = Br, (2)

where M, C, D, K, G and B are the inertia, Coriolis
and centripetal, viscous damping, stiffness, gravity and in-
put matrices of appropriate dimension, respectively. The
Coriolis and centripetal matrix C is chosen to satisfy the
skew symmetric property such as g7 (M —2C)q = 0. Var-
ious dynamic and mathematical properties related above
equation are given in [1]. If we rewrite Eq.(2) in detail,
then,

M, M. é+c,,C,, é+o 0 é+
Mg Mgg||D Cs Crr|lo 0 Dyl

o)+ 5] )

where r and f denote rigid and flexible parts. We assume
that the viscous damping term exists only in the flexible
part. If we consider the imaginary rigid link robot which
produces no vibration, the kinematic relation can be writ-
ten as

®3)

xo = h(0,0), ('B0=Jaé, 5:0=Joé+Jaé.

Similarly, by fixing all the flexible coordinates to zero
{(v =6 = ¥ = 0), we can obtain the cartesian coordinate
dynamics[6] such that

A +Te+T=§, @)
where
A2 5 TM 37 TR T (Cr - M35 ) T
o2 J;7g, 237

Whenever one wants to perform the output tracking, es-
pecially in the flexible manipulator, it will be better to
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control the errors defined in the cartesian space besides
the availability of the error state. The cartesian error can
be obtained using the strain gauge signals. This direct
cartesian control will also save the efforts on the calcula-
tion of inverse dynamics that usually requires very complex
procedures and time-consuming iteration. In the following
section, we will present the cartesian space PD control with
vibration damping. When the link is also flexible in the
gravity force direction, the equilibrium position for given
joint angle @ has always static deflection that equilibrates
the following algebraic equation[12].

Kgsv +gf(0,v) =0.

To avoid this configuration-dependent static deflection
problem, we will assume that the manipulator motions and
vibrations are allowed only in the perpendicular direction
to gravity (G(q) = 0). This simplification does not lose
the validity of our results and one can easily generalize
them.

3 Control Strategy

As was mentioned in the previous section, the direct
cartesian design of controller has some advantages over
the joint space control schemes. In this section, we will
propose a nonlinear PD control which involves vibration
damping. This method works both on the end effector
regulation and on trajectory tracking problems.

First of all, we must define a vector saturation func-
tion S (a, eb). The arguments a and b are r dimensional
vectors and € > 0 is a scalar constant smaller than unity.
S (ai, €b;) denotes the i-th element of S (a, eb). Then,

= sgn{a:)elb:| if |ai] > elb:

S (a, eb;):{a% [bs] if[la.-:Se}b.-; =17

Theorem 1 (Regulation) Consider the following con-
trol law

r=J7T [K,,eo +K,5 (&, ceo) — K,,Jgé] . ()
where eg, e and € represent rigid end point error, real end
point error and their difference, respectively, in the task
space defined by

€ =T0—Td, €=T — Td,

€—=eyg—€e=x—xo.

If the gain matrices K, and K, are diagonal positive defi-
nite, then, £ = x4, £ = 0, and v = v = 0 are the globally
asymptotically stable equilibrium point of closed loop sys-
tem (2) and (5).

Proof Consider the following Lyapunov candidate func-
tion.

R 1. ., 1 1
V(eo,v,4) = EqTMq + EvTKffv + EeoTero -+
¢
/ éd K,S (€, eeo) dt.
[



Firstly, let’s show the positive definiteness of V. If we
assume that initial cartesian error is zero (eo(0) = 0), the
last two terms can be written as

t

Veo = pelKpeo+ [ & K,SE, ceo) at

2 °

r eg,i(t) o
= / Ky [eo: + S (€, eeo)] deoys

i=1v€0,s ©)

where the index ¢ represents the ith element. From the def-
inition of saturation function S (€;, eeo,i), Ve, is bounded
such that

1- l1+e€

2
Therefore, the chosen Lyapurnov candidate function is pos-

itive definite. If we take time derivative along the closed
loop system (2) and (5), then,

0< eeng,,eo LV < engeo.

V(x,,e0,v) = 4" Mg + EqTMq + 9T K
+ éng [eo + 5 (€, Eeo)]
=—0 JTK,Js0—9"Dsso < 0

In the above derivation, we implicitly used the skew sym-
metric property of M — 2C. Invoking LaSalle’s invariant
set theorem, the single point (xo, v, q) = (x4, 0, 0) is glob-
ally asymptotically stable equilibirum. Since, whenever
v = 0, oo is same as @, this concludes our proof. M

In general, the trajectory tracking control requires
both feedforward and feedback torques. Using Eq.(4),
cartesian feedforward torque can be generated without
iterative dynamic inversion.
Theorem 2 (Tracking) Consider the following control
law

T=J; [A#y+Tiy+ Kpeo + ©)

K5 (€, ceo) + Kyéo].

If the gain matrix K, and K, are diagonal positive, all the
system states e, €, v and 9 are globally uniformly bounded
in the closed loop system (2) and (6).

Proof Consider the Lyapunov candidate function as

. . ., 1
V(eo,v, 8) = %sTMs + -Z—vTK;fv + %engeo +

t
f &3 K,S8 (€, eeo) dt,
0

where 8 denotes the joint space tracking error which is
defined by

_lse| _|84a—0

T s T | v |

Since the desired flexible variables vy and vy are set to
zero, the desired joint solution then can be given by

8;= h_l(wd), éd = J;ld‘d,
be=37" (80— Tod7'a).
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Although the desired joint space solutions were defined
above, we do not have to calculate them in the real im-
plementation provided that we have the knowledge of the
explicit form of A and . As was in the regulation case,
this Lyapunov candidate function is surely a positive one.
Plugging the control law (6) into the dynamic equation
(2), the closed loop system becomes

- . . _ “—Tﬂ, .
Mé+Cs+Ds+Ks= [Mfrod+cfrod] , (7

where Ty, is the feedback torque term defined by
Tis=Js [Kpeo+ K5 (€, ceo) + Kvéo].
Taking the time derivative of V along Eq.(7), then,
V=aTMs+ %HM@ + 9T K 0 +
és Kpeo + €5 K, (8, eeo)

=585 J5 KoJosg — 8T Dysa, +
51 (Ms,.04 + Cs.04).

Whenever the motion trajectory is sufficiently smooth and
the rigid joints follow the desired trajectories well enough,
we can assume that @3 ~ 8, 84~ 6. Then,

t
n= /0 [BZ(Mfréd + Cfréd)] dt
~ /0 t [:;3 (M ;.0 + cf,é)] dt

i
= / [67 (M7 +Cpo+ Dysio +K,,v] dt
0

=0+ P40 - T;0) =P+ [ ["Dyso]
< Th(E) + P(t) +/t [6"Dyso] at,
0

where the 77 and Py are kinetic and potential energy due
to vibration such that

1. : 1
T; = EvTMHv, Ps = 5vTK,,u

using the skew symmetric property of M ;s —2C;. Since
0 and O are bounded and energy is continuously dis-
sipated by viscosity, the flexible variable v, ¥ and # are
bounded and consquently so are its kinetic and potential
energy. Therefore, we get the conclusion that

t . .
7]=/ [éf(Mfrod+ergd)]dt <oo VE20.
0
Since the kinetic energy V'; = 247 M5 satisfies
Amin(M) || 8 ”25 Vi < Amaz(M) || 8 ”2’

we can write

V <=9V + é?z‘(Mfréd + Cfrad)



for some y > 0. Integrating the above equation,

Ve -vo < [ Vit +n, ®)

which implies the global uniform boundedness of V and
thus V;. Then,

t
7/ Vidt <V(0)+7
4]

due to the positive definiteness of V. Since V; is uni-
formly bounded and also uniformly continuous, it follows
from the Barbalat’s lemma that lim, o Vi(¢) = 0, which
means that lim;yeo || 8 ||= 0. From (8), all the states
are uniformly bounded as much as to satisfy the following
inequality.

V) SV(@©) +n Vt>0

Therefore, we come to a conclusion that the proposed con-
trol law (6) guarantees the global uniform bounded stabil-

ity of Eq.(2).

REMARKS 3.1 Although the saturation term S (€, eeo)
does not play any crucial role in the stability proof of The-
orem 1 or 2, it improves the capability for the suppression
of vibration induced by the coupling of rigid motion. Since
the € is the difference fram real tip position lo imaginary
rigid tip position, by the addition of € in the feedback loop,
the overall motion is commanded to simultaneously follow
the desired trajectory and regulate the concurrent vibration.
Allowing the saturation of €, we can guarantee the closed
loop stability same as that of pure PD control.

4 Concluding Remarks

In this paper, we proposed a cartesian based nonlin-
ear PD control. Actually, in the flexible manipulators, we
had a very limited usage of PD control due to the lack
of rigorous stability proof for the tracking problems. Our
results, in view of this fact, can enlarge the usage of PD
contro! without any hindrance. The stability and perfor-
mance were tested and verified by simulation examples.
The structure of this control law is so simple that one
can easily implement in the real system. Another advan-
tage in real implementation is that it does not require the
derivative of strain gauge signals for the vibration suppres-
sion. Due to the high capability of vibration reduction, this
scheme can also be used in parallel with any other control
schemes which are short of this damping chracteristic.
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