• Title/Summary/Keyword: Robotic vacuum cleaner

Search Result 5, Processing Time 0.02 seconds

A Human Robot Interactive System "RoJi"

  • Shim, Inbo;Yoon, Joongsun;Yoh, Myeungsook
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.398-405
    • /
    • 2004
  • A human-friendly interactive system that is based on the harmonious symbiotic coexistence of humans and robots is explored. Based on the interactive technology paradigm, a robotic cane is proposed for blind or visually impaired pedestrians to navigate safely and quickly through obstacles and other hazards. Robotic aids, such as robotic canes, require cooperation between humans and robots. Various methods for implementing the appropriate cooperative recognition, planning, and acting, have been investigated. The issues discussed include the interaction between humans and robots, design issues of an interactive robotic cane, and behavior arbitration methodologies for navigation planning.

Feature Map Based Complete Coverage Algorithm for a Robotic Vacuum Cleaner (청소 로봇을 위한 특징점 맵 기반의 전 영역 청소 알고리즘)

  • Baek, Sang-Hoon;Lee, Tae-Kyeong;Oh, Se-Young;Ju, Kwang-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • The coverage ability is one of essential techniques for the Robotic Vacuum Cleaner (RVC). Most of the RVCs rely on random or regular pattern movement to cover a target space due to the technical difficulties to implement localization and map and constraints of hardwares such as controller and sensors. In this paper, we consider two main issues which are low computational load and using sensors with very limited sensing capabilities. First, in our approach, computing procedures to build map and detect the RVC's position are minimized by simplifying data obtained from sensors. To reduce computational load, it needs simply presenting an environment with objects of various shapes. Another isuue mentioned above is regarded as one of the most important problems in our approach, because we consider that many RVCs use low-cost sensor systems such as an infrared sensor or ultrasonic sensor with limited capabilities in limited range, detection uncertainty, measurement noise, etc. Methods presented in this paper are able to apply to general RVCs equipped with these sensors. By both simulation and real experiment, we evaluate our method and verify that the proposed method guarantees a complete coverage.

The Study on Indoor Localization for Robots following Human using Vision Applications (비전을 활용한 사람을 따라다니는 로봇의 실내측위에 관한 연구)

  • Jun, Bong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1370-1374
    • /
    • 2013
  • The suitcase can follow its owner all on its own via the Bluetooth connectivity in your phone. A robotic vacuum cleaner than can understand voice commands and even follow homeowner. Robots are used in a variety of applications such as a robot wheelchair. In this paper, I focus the problem of automatic return to the base in the process of developing the moving robot for loading things. In this paper, I propose the indoor localization method which is able to determine the position of the robot in the building by using image processing techniques.

The study of indoor localization for Robot following human using vision application (비전을 활용한 사람을 따라다니는 로봇의 실내측위에 관한 연구)

  • Jun, Bong-Gi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.340-342
    • /
    • 2013
  • The suitcase can follow its owner all on its own via the Bluetooth connectivity in your phone. A robotic vacuum cleaner than can understand voice commands and even follow homeowner. Robots are used in a variety of applications such as a robot wheelchair. In this paper, I focus the problem of automatic return to the base in the process of developing the moving robot for loading things.

  • PDF

An Alternative Scheme for localization for Robotic vacuum cleaner by 5G smart phone (5G 스마트폰을 활용한 로봇 청소기 측위 보조 방안)

  • Kim, Kihyoung;Kim, Youngkyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.305-306
    • /
    • 2022
  • 본 논문에서는 5G 스마트폰을 활용하여 사용자가 로봇 청소기의 위치 추정을 도울 수 있는 방안을 소개한다. 로봇 청소기는 다양한 알고리즘을 활용하여 자신의 위치를 추정하며, 때로는 오차가 발생하기도 한다. 현재 많은 사람들은 5G 스마트폰을 소유하고 있으며, 이 5G 스마트폰을 활용하여 로봇 청소기의 위치 추정을 보조할 수 있는 방안을 제안한다. 5G 스마트폰은 MIMO 안테나를 사용하여 통신을 하는데, MIMO 안테나는 기존의 전 방향성 안테나와는 달리 방향성을 가지고, 고주파를 사용하기 때문에 신호의 직진성을 보장받는다. 이러한 특성을 활용하여 스마트폰을 참조 노드로 하여 로봇 청소기는 측위를 보조할 수 있다. 본문에서 제안하는 아이디어를 소개하며, Matlab을 활용하여 아이디어의 효용성을 검증하였다.

  • PDF