• Title/Summary/Keyword: Robotic System

Search Result 818, Processing Time 0.023 seconds

Adaptive Tracking of Uncertain Robotic Systems (불확실한 로보트 시스템의 적응제어)

  • 김홍석;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.944-955
    • /
    • 1990
  • A high-performance robotic controller is proposed for uncertain robots by using an adaptive control method, which guarantees the boundedness of uncertain systems with partially known uncertainty bounds. In order to improve the tracking performance of the robotic controller, a linear compensator is introduced to the robotic system which has been linearized via a nonlinear feedback. The above adaptive method is then utilized to guarantee the ultimate boundedness of the tracking errors. The performance of the robotic controller is compared with that of the computed torque method by computer simulations under uncertain environments. The simulation results show that the proposed method gives better performance than the computed torque method. Since the proposed method has a small number of parameters to be estimated, the controller is simpler to implement than other existing adaptive controller for robots. Hence, the proposed robotic control method is expected to be well suited for high-performance operation of robots under uncertain environment.

  • PDF

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing (촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발)

  • Kim, Da Wan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2022
  • High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we fabricated multi-walled carbon nanotube sensing layer on a thin polymeric adhesive layer of polydimethylsiloxane. With densely hexagonal-packed microstructures, the pressure sensor achieved 9 times the sensing property of a sensor without microstructures. We then assembled hexagonal microstructures inspired by the toe pads of a tree frog, giving strong shear adhesion under both dry and wet surfaces such as silicon (42 kPa for dry and ~30 kPa for underwater conditions) without chemical-residues after detachment. Our robotic gripper can prevent damage to weak or smooth surfaces that can be damaged at low pressure through pressure signal feedback suggesting a variety of robotic applications.

Robot-Assisted Transoral Odontoidectomy : Experiment in New Minimally Invasive Technology, a Cadaveric Study

  • Yang, Moon-Sul;Yoon, Tae-Ho;Yoon, Do-Heum;Kim, Keung-Nyun;Pennant, William;Ha, Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.4
    • /
    • pp.248-251
    • /
    • 2011
  • Objective : In the field of spinal surgery, a few laboratory results or clinical cases about robotic spinal surgery have been reported. In vivo trials and development of related surgical instruments for spinal surgery are required before its clinical application. We investigated the use of the da $Vinci^{(R)}$ Surgical System in spinal surgery at the craniovertebral junction in a human cadaver to demonstrate the efficacy and pitfalls of robotic surgery. Methods : Dissection of pharyngeal wall to the exposure of C1 and odontoid process was performed with full robotic procedure. Although assistance of another surgeon was necessary for drilling and removal of odontoid process due to the lack of appropriate end-effectors, successful robotic procedures for dural sutures and exposing spinal cord proved its safety and dexterity. Results : Robot-assisted odontoidectomy was successfully performed in a human cadaver using the da $Vinci^{(R)}$ Surgical System with few robotic arm collisions and minimal soft tissue damages. Da $Vinci^{(R)}$ Surgical System manifested more dexterous movement than human hands in the deep and narrow oral cavity. Furthermore, sutures with robotic procedure in the oral cavity demonstrated the advantage over conventional procedure. Conclusion : Presenting cadaveric study proved the probability of robot-assisted transoral approach. However, the development of robotic instruments specific to spinal surgery must first precede its clinical application.

Dynamic Manipulability Analysis of Underwater Robotic Arms with Joint Velocities (관절속도를 가지는 수중로봇팔의 동적 조작도 해석)

  • JEON BONG-HWAN;LEE JIHONG;LEE PAN-MOOK
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.204-209
    • /
    • 2004
  • This paper describes dynamic manipulability analysis of robotic arms moving in viscous fluid. The Manipulability is a functionality of manipulator system in a given configuration and under the limits of joint ability with respect to the tasks required to bt performed. To investigate the manipulability of underwater robotic arms, a modeling and analysis method are presented. The dynamic equation of motion of underwater manipulator is derived from the Lagrange - Euler equation considering with the hydraulic forces caused by added mass, buoyancy and hydraulic drag. The hydraulic drag term in the equation: is established as analytical form using Denavit - Hartenberg (D-H) link coordination of manipulator. Two analytical approaches based on Manipulability Ellipsoid are presented to visualize the manipulability of robotic arm moving in viscous fluid. The one is scaled ellipsoid which transforms the boundary of joint torque to acceleration boundary of end-effector by normalizing the torque in joint space while the other is shifted ellipsoid which depicts total acceleration boundary of end-effector by shifting the ellipsoid in work space. An analysis example of 2-link manipulator with proposed analysis scheme is presented to validate the method.

  • PDF

An Automatic Teaching Method by Vision Information for A Robotic Assembly System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kim, Jong-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • In this study, an off-line automatic teaching method using vision information for robotic assembly task is proposed. Many of industrial robots are still taught and programmed by a teaching pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and played back repetitively to perform the robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and transferred to the robot controller. This teaching process is implemented through an off-line programming(OLP) software. The OLP is developed for the robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on the assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line automatic teaching.

  • PDF

Design and Implementation of the Cable Rod Hydraulic Actuator for Robotic Revolute Joints (로봇의 회전관절을 위한 케이블 로드를 갖는 유압 구동기 설계 및 구현)

  • Kim, Jungyeong;Park, Sangdeok;Cho, Jungsan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.723-730
    • /
    • 2016
  • This paper presents a cable-driven hydraulic actuator named Cable Rod Hydraulic Actuator (CRHA). The cable actuating system is attractive for designing a compact joint in robotic applications since it can be installed remotely from the joint. Recently, cable rods have been used in pneumatic area for inertia reduction. However, designing cable rods in hydraulics is challenging because it is difficult to achieve flexibility and endurance simultaneously under high pressure conditions. In this paper, the cable rod, which consists of a cable and jacket, is proposed to meet both requirements. To design the CRHA, we determined the design parameters, such as cylinder size, and selected the cable rod's material by friction and leakage test. Finally, comparisons experiments about step and frequency responses with conventional hydraulic actuators were performed to assess feasibility for robotic joints, and the results show that the proposed system has good bandwidth and fast response as robotic joints.

3-Finger Robotic Hand and Hand Posture Mapping Algorithm for Avatar Robot (아바타 로봇을 위한 3지 로봇 손과 손 자세 맵핑 알고리즘)

  • Kim, Seungyeon;Sung, Eunho;Park, Jaeheung
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.322-333
    • /
    • 2022
  • The Avatar robot, which is one of the teleoperation robots, aims to enable users to feel the robot as a part of the body to intuitively and naturally perform various tasks. Considering the purpose of the avatar robot, an end-effector identical to a human hand is advantageous, but a robotic hand with human hand level performance has not yet been developed. In this paper we propose a new 3-finger robotic hand with human-avatar hand posture mapping algorithm which were integrated with TOCABI-AVATAR, one of the teleoperation system. Due to the flexible rolling contact joints and tendon driven mechanism applied to the finger, the finger could implement adaptive grasping and absorb the impact force caused by unexpected contacts. In addition, human-avatar hand mapping algorithm using five calibration hand postures propose to compensate physical differences between operators. Using the TOCABI-AVATAR system with the robotic hands and mapping algorithm, the operator can perform 13 out of 16 hand postures of grasping taxonomy and 4 gestures. In addition, using the system, we participated in the ANA AVATAR XPRIZE Semi-final and successfully performed three scenarios which including various social interactions as well as object manipulation.

The Present and Future of Robotic Surgery (로봇수술의 현재와 미래)

  • Rha, Koon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.68-70
    • /
    • 2008
  • Since the beginning of the 21st century, the emergence of innovative technologies made further advances in minimal access surgery possible. Robotic surgery and telepresence surgery effectively addressed the limitations of laparoscopic procedures, thus revolutionizing minimal access surgery. Surgical robots provide surgeons with to technologically advanced vision and hand skills. As a result, such systems are expected to revolutionize the field of surgery. In that time, much progress has been made in integrating robotic technologies with surgical instrumentation. However, robotic surgery will not only require special training, but it will also change the existing surgical training pattern and reshape the learning curve by offering new solutions, such as robotic surgical simulators and robotic telementoring. This article provides an introduction to medical robotic technologies, develops a possible classification, reviews the evolution of a surgical robot, and discusses future prospects for innovation. In the future, surgical robots should be smaller, less expensive, easier to operate, and should seamlessly integrate emerging technologies from a number of different fields. We believe that, in the near future as robotic technology continues to develop, almost all kinds of endoscopic surgery will be performed by this technology.

  • PDF

Design of a Low-Cost Micro Robotic System for Developing and Validation Control Algorithms

  • Isarakorn, Don;Suksrimuang, Chatchai;Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1945-1948
    • /
    • 2004
  • This paper describes the design and construction of a micro robotic system addressing such important aspects as versatility and low cost for rapid development and test of new control algorithm. The design and structure of micro robots are presented in detail. The supervision oriented concept is designed for controlling a group of micro robots. In this concept, the vision system recognizes the environment and the host computer decides the micro robot action based on the information from the vision system. In addition, the micro robots can be implemented cheaply and small in size because the structure of supervision oriented system is simplest. The experimental results and the performance of the proposed micro robotic system are discussed.

  • PDF

Development of a Robot System for Repairing a Underground Pipe (지하매설 배관의 보수를 위한 로봇시스템 개발)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1270-1274
    • /
    • 2012
  • The pipe laid underground more than three decades ago are already starting to reveal the problem like corrosion. There have been many studies to design robotic system for a cost-effective revival of old pipes. And the ability to inspect in the pipes, the ability to treat and repaint the pipes and the fault-tolerant robotic system are well known important factors for the robotic system. It's real hard part to manage the underground pipes for companies because it needs high technical and too much money. According to this reasons, in this paper, we had design an in-pipe robotic system having abilities to inspect outworn pipes, to treat and paint old pipes. This new robot system is pressing wall type robot, and it has a good carrying power for working.