• Title/Summary/Keyword: Robotic Motion

Search Result 268, Processing Time 0.024 seconds

Improving the Performance of a Robotic Dolphin with a Compliant Caudal Fin (꼬리 지느러미의 유연성을 이용한 로봇 돌고래의 성능 향상)

  • Park, Yong-Jai;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.225-231
    • /
    • 2014
  • Fish generates thrust with a compliant fin which is known to increase the efficiency. In this paper, the performance of a robotic dolphin, the velocity and the stability, was improved using an optimal compliant caudal fin under certain oscillating frequency. Optimal compliance of the caudal fin exists that maximizes the thrust at a certain oscillating frequency. Four different compliant fins were used to find the optimal compliance of the caudal fin at a certain frequency using the half-pi phase delay condition. The swimming results show that the optimal compliant fin increases the velocity of the robotic fish. The compliance of the caudal fin was also shown to improve the stability of the robotic fish. A reactive motion at the head of the robotic dolphin causes fluctuation of the caudal fin. This phenomenon increases with the oscillating frequency. However, compliant fin reduced this fluctuation and increased the stability.

Robotic Lateral Compartment Selective Neck Dissection in Well-Differentiated Thyroid Carcinoma (갑상선 분화암에서 로봇을 이용한 측경부 림프절 절제술)

  • Tae, Kyung
    • Korean Journal of Bronchoesophagology
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • Robotic thyroidectomy has been developed to minimize neck scarring, and several authors have described its feasibility and safety, and have reported surgical outcomes comparable with conventional open thyroidectomy. The da Vinci surgical system robot provides a three-dimensional $10-12{\times}$magnified view of the surgical area. It also provides hand-tremor filtration, fine motion scaling, and precise and multi-articulated hand-like motions. Recently, robotic technology has also been applied to lateral compartment neck dissection in thyroid cancer. We have developed a new novel selective neck dissection procedure by a gasless unilateral axillo-breast (GUAB) approach with a da Vinci Surgical System for well-differentiated thyroid carcinoma to avoid a long visible neck scar. Based on our early experience, robotic selective neck dissection by GUAB approach is a safe, feasible and cosmetically excellent procedure. It can be an alternative to conventional open surgery in the highly selected patients with well-differentiated thyroid carcinoma. The oncologic safety of robotic selective neck dissection should be verified with long-term follow-up data.

  • PDF

Simulation and Experimental Studies of Real-Time Motion Compensation Using an Articulated Robotic Manipulator System

  • Lee, Minsik;Cho, Min-Seok;Lee, Hoyeon;Chung, Hyekyun;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.171-180
    • /
    • 2017
  • The purpose of this study is to install a system that compensated for the respiration motion using an articulated robotic manipulator couch which enables a wide range of motions that a Stewart platform cannot provide and to evaluate the performance of various prediction algorithms including proposed algorithm. For that purpose, we built a miniature couch tracking system comprising an articulated robotic manipulator, 3D optical tracking system, a phantom that mimicked respiratory motion, and control software. We performed simulations and experiments using respiratory data of 12 patients to investigate the feasibility of the system and various prediction algorithms, namely linear extrapolation (LE) and double exponential smoothing (ES2) with averaging methods. We confirmed that prediction algorithms worked well during simulation and experiment, with the ES2-averaging algorithm showing the best results. The simulation study showed 43% average and 49% maximum improvement ratios with the ES2-averaging algorithm, and the experimental study with the $QUASAR^{TM}$ phantom showed 51% average and 56% maximum improvement ratios with this algorithm. Our results suggest that the articulated robotic manipulator couch system with the ES2-averaging prediction algorithm can be widely used in the field of radiation therapy, providing a highly efficient and utilizable technology that can enhance the therapeutic effect and improve safety through a noninvasive approach.

Development of a Cardiac Catheter Remote Control Robot Platform for Radiofrequency Ablation Intervention (고주파 절제술을 위한 심장전극도자 원격 제어 로봇 플랫폼의 개발)

  • Park, Jun-Woo;Song, Seung-Joon;Lee, Jung-Chan;Choi, Hyuk;Lee, Jung-Joo;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1417-1426
    • /
    • 2011
  • Radiofrequency ablation through cardiac catheterization is one of minimally invasive intervention procedures used in drug resistant arrhythmia treatment. To facilitate more accurate and precise catheter navigation, systems for robotic cardiac catheter navigation have been developed and commercialized. The authors have been developing a novel robotic catheter navigation system. The system is a network-based master-slave configuration 3-DOF (Degree-Of-Freedom) robotic manipulator for operation with conventional cardiac ablation catheter. The catheter manipulation motion is composed of the translation (forward/backward) and the roll movements of the catheter and knob rotation for the catheter tip articulation. The master manipulator comprises an operator handle compartment for the knob and the roll movement input, and a base platform for the translation movement input. The slave manipulator implements a robotic catheter platform in which conventional cardiac catheter is mounted and the 3-DOF motions of the catheter are controlled. The system software that runs on a realtime OS based PC, implements the master-slave motion synchronization control in the robot system. The master-slave motion synchronization performance tested with step, sinusoidal and arbitrarily varying motion commands showed satisfactory results with acceptable level of steady state error. The developed system will be further improved through evaluation of safety and performance in in vitro and in vivo tests.

Dynamic tracking control of robot manipulators using vision system (비전 시스템을 이용한 로봇 머니퓰레이터의 동력학 추적 제어)

  • 한웅기;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1816-1819
    • /
    • 1997
  • Using the vision system, robotic tasks in unstructured environments can be accompished, which reduces greatly the cost and steup time for the robotic system to fit to he well-defined and structured working environments. This paper proposes a dynamic control scheme for robot manipulator with eye-in-hand camera configuration. To perfom the tasks defined in the image plane, the camera motion Jacobian (image Jacobian) matrix is used to transform the camera motion to the objection position change. In addition, the dynamic learning controller is designed to improve the tracking performance of robotic system. the proposed control scheme is implemented for tasks of tracking moving objects and shown to outperform the conventional visual servo system in convergence and robustness to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Inverse Kinematics of Complex Chain Robotic Mechanism Using Ralative Coordinates (상대좌표를 이용한 복합연쇄 로봇기구의 역기구학)

  • Kim, Chang-Bu;Kim, Hyo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3398-3407
    • /
    • 1996
  • In this paper, we derive an algorithm and develope a computer program which analyze rapidly and precisely the inverse kinematics of robotic mechanism with spatial complex chain structure based on the relative coordinates. We represent the inverse kinematic problem as an optimization problem with the kinematic constraint equations. The inverse kinematic analysis algorithm, therefore, consists of two algorithms, the main, an optimization algorithm finding the motion of independent joints from that of an end-effector and the sub, a forward kinematic analysis algorithm computing the motion of dependent joints. We accomplish simulations for the investigation upon the accuracy and efficiency of the algorithm.

Finite motion analysis for multifingered robotic hand considering sliding effects

  • Chong, Nak-Young;Choi, Donghoon;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.370-375
    • /
    • 1992
  • An algorithm for the notion planning of the robotic hand is proposed to generate finite displacements and changes in orientation of objects by considering sliding effects between the fingertips and the object at contact points. Specifically, an optimization problem is firstly solved to find minimum contact forces and minimum joint velocities to impart a desired motion to the object at each time step. Then the instantaneous relative velocity at the contact point is found by determining velocities of the fingertip and the velocity of the object at the contact point. Finally time derivatives of the surface variables and contact angle of the fingertip and the object at the present time step is computed using the Montana's contact equation to find the contact parameters of the fingertip and the object at the next time step. To show the validity of the proposed algorithm, a numerical example is illustrated by employing the robotic hand manipulating a sphere with three fingers each of which has four joints.

  • PDF

Optimized Motion Planning Considering the Lifetime for Bimanual Robotic Assembly (양팔 로봇을 이용한 조립 작업에서 수명을 고려한 최적 운동 계획법)

  • Hwang, Myun Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.972-976
    • /
    • 2015
  • The objective of this research is to verify the quantitative efficiency of a bimanual robotic task. Bimanual robots can realize dexterous and complicated motions using two cooperating arms. However, its motion planning and control method are not simple for implementing flexible tasks such as assembly. In this paper, the proposed motion planning method is used to find an optimal solution satisfying a designed cost function and constraints with regard to the kinematics and redundancy of the bimanual robot. The simulation results show that the lifetime of the manipulator can be changed by the proposed cost function consisting of angular velocity and angular acceleration of each joint in the same assembly task.

Gain Optimization of a Back-Stepping Controller for 6-Dof Underwater Robotic Platform (6 자유도 수중로봇 플랫폼의 백스테핑 제어를 위한 제어이득 최적화)

  • Kim, Jihoon;Kim, Jong-Won;Jin, Sangrok;Seo, TaeWon;Kim, Jongwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1031-1039
    • /
    • 2013
  • This paper presents gain optimization of a 6-DOF underwater robotic platform with 4 rotatable thrusters. To stabilize the 6-DOF motion of the underwater robotic platform, a back-stepping controller is designed with 6 proportional gains and 6 derivative gains. The 12 gains of the backstepping controller are optimized to decrease settling time in step response in 6-DOF motion independently. Stability criterion and overshoots are used as a constraint of the optimization problem. Trust-region algorithm and hybrid Taguchi-Random order Coordinate search algorithm are used to determine the optimal parameters, and the results by two methods are analyzed. Additionally, the resulting controller shows improved performance under disturbances.

A NOVEL APPROACH OF BUILDING CONSTRUCTION USING ROBOTIC TECHNOLOGY

  • Baeksuk Chu;Kyungmo Jung;Hunhee Cho;Myo-Taeg Lim;Daehie Hong
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.31-37
    • /
    • 2011
  • Construction automation is yet to be improved since construction site still faces a lot of high risks and difficulties. This research focuses on applying robotic beam assembly system in place of construction workers. This system consists of CF (Construction Factory) structure to provide adequate working environment to robot automation. The CF structure not only gives automation environment for a robot but also houses the equipments to protect from outside effects. The robotic beam assembly system also consists of robotic bolting system and robot transport mechanism. It utilizes various tools to insert and join the bolts and nuts. Visual servoing helps precise robot motion by sensing bolt hole and tail of the bolt. ITA system helps non skilled workers to easily perform the assembly work with the robot system. The robot transport mechanism includes sliding rail and cross-wired lift. It carries the robot to a desired position for assembly work.

  • PDF