• Title/Summary/Keyword: Robotic Device

Search Result 114, Processing Time 0.301 seconds

Fabrication of Artificial Crystal Architectures by Micro-manipulation of Spherical Particles

  • Takagi, Kenta;Kawasaki, Akira;Watanabe, Ryuzo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.910-911
    • /
    • 2006
  • We newly designed and manufactured a new arranging system for a three-dimensional artificial crystal of monosized micro particles. In this system, a robotic micro-manipulator accurately locates the spherical particle onto the lattice point, and subsequently fiber lasers micro-weld the contact points between the neighboring particles. Actually, one- and two-dimensional arrays were constructed using monosized tin particles with the diameter of 400 m. Moreover, due to optimization of the process parameters, we successfully constructed the artificial crystals of simple cubic and diamond structures. In particular, the diamond structure which can represent a large photonic band gap is expected to progress toward a practical photonic crystal device.

  • PDF

단일마스터 멀티슬레이브형 텔레로보틱스 수술시스템 개발 (Development of Telerobotic Surgery System with Single-Master Multi-Slave)

  • 황길경;진태석;하시모토히데키
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.918-925
    • /
    • 2006
  • Medical robotics and computer aided surgery in general, and robotic telesurgery in particular, are promising applications of robotics. In this paper, we shows a novel single-master (PHANTOM based single-master multi-slave telerobotic system) multi-slave system using two parallel mechanism micromanipulators as a slave device. After a general introduction to the systems structure and configuration of telerobotic system, a manipulation control strategy to build the system that human and both manipulators perform the cooperative manipulation, is introduced, followed by its kinematic analysis, mapping method, and experimental results.

무학습 근전도 패턴 인식 알고리즘: 부분 수부 절단 환자 사례 연구 (Training-Free sEMG Pattern Recognition Algorithm: A Case Study of A Patient with Partial-Hand Amputation)

  • 박성식;이현주;정완균;김기훈
    • 로봇학회논문지
    • /
    • 제14권3호
    • /
    • pp.211-220
    • /
    • 2019
  • Surface electromyogram (sEMG), which is a bio-electrical signal originated from action potentials of nerves and muscle fibers activated by motor neurons, has been widely used for recognizing motion intention of robotic prosthesis for amputees because it enables a device to be operated intuitively by users without any artificial and additional work. In this paper, we propose a training-free unsupervised sEMG pattern recognition algorithm. It is useful for the gesture recognition for the amputees from whom we cannot achieve motion labels for the previous supervised pattern recognition algorithms. Using the proposed algorithm, we can classify the sEMG signals for gesture recognition and the calculated threshold probability value can be used as a sensitivity parameter for pattern registration. The proposed algorithm was verified by a case study of a patient with partial-hand amputation.

제스츄어 커뮤니케이션: 새로운 방식의 디지털 커뮤니케이션의 참여 디자인 제안 (Gesture Communication: Collaborative and Participatory Design in a New Type of Digital Communication)

  • 원하연
    • 한국과학예술포럼
    • /
    • 제20권
    • /
    • pp.307-314
    • /
    • 2015
  • Tele-Gesture is a tangible user interface(TUI) device that allows a user to physically point to a 3D object in real life and have their gestures play back by a robotic finger that can point to the same object, either at the same time, or at another point in time. To understand the extent of the gestures as new way of digital collaborative communication, collaboration situation and types were experimented as TUI implementations. The design prototype reveals that there is a rich non-verbal component of communication in the form of gesture-clusters and body movements that happen in an digital communication. This result of analysis can contribute to compile relevant contributions to the fields of communication, human behavior, and interaction with high technology through an interpretive social experience.

토크센서 기반 사용자의도 파악이 가능한 보행보조기용 인휠 구동기 개발 (Development of In-wheel Actuator for Active Walking Aids Equipped with Torque Sensor for User Intention Recognition)

  • 임승환;김태근;김동엽;황정훈;김봉석;박창우;이재민;홍대희
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1141-1146
    • /
    • 2014
  • As life expectancy becomes longer, reduction of human muscular strength threatens quality of human life. Many robotic devices have thus been developed to support and help human daily life. This paper deals with a new type of in-wheel actuator that can be effectively used for the robotic devices. BLDC motor, drive board, brake, ARS (Attribute Reference System), and torque sensor are combined in the single actuator module. The torque sensor is used to recognize human intention and the in-wheel actuator drives walking aids in our system. Its feasibility was tested with the active walking aid device equipped with the in-wheel actuator. Based on it, we designed an admittance filter algorithm to react on uphill and downhill drive. By adjusting mass, damping, and spring parameters in accordance with the ARS output, it provided convenient drive to the old on uphill and downhill walks.

스프링 격발형 생검총 구조를 가진 생검 시술 자동화 로봇 말단장치 (A Robot End-effector for Biopsy Procedure Automation with Spring-Triggered Biopsy Gun Mechanism)

  • 원종석;문영진;박상훈;최재순
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.590-596
    • /
    • 2016
  • Biopsy is a typical needle type intervention procedure performed under radiographic image equipment such as computed tomography (CT) and cone-beam CT. This minimal invasive procedure is a simple and effective way for identifying cancerous condition of a suspicious tissue but radiation exposure for the patients and interventional radiologists is a critical problem. In order to overcome such trouble and improve accuracy in targeting of the needle, there have been various attempts using robot technology. Those devices and systems, however, are not for full procedure automation in biopsy without consideration for tissue sampling task. A robotic end-effector of a master-slave tele-operated needle type intervention robot system has been proposed to perform entire biopsy procedure by the authors. However, motorized sampling adopted in the device has different cutting speed from that of biopsy guns used in the conventional way. This paper presents the design of a novel robotic mechanism and protocol for the automation of biopsy procedure using spring-triggered biopsy gun mechanism. An experimental prototype has been successfully fabricated and shown its feasibility of the automated biopsy sequence.

RDS(Robotic Drilling System)용 TCP 정밀계측을 위한 iGPS 3D Probe 개발에 관한 연구 (A Study on the Development of iGPS 3D Probe for RDS for the Precision Measurement of TCP)

  • 김태화;문성호;강성호;권순재
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.130-138
    • /
    • 2012
  • There are increasing demands from the industry for intelligent robot-calibration solutions, which can be tightly integrated to the manufacturing process. A proposed solution can simplify conventional robot-calibration and teaching methods without tedious procedures and lengthy training time. iGPS(Indoor GPS) system is a laser based real-time dynamic tracking/measurement system. The key element is acquiring and reporting three-dimensional(3D) information, which can be accomplished as an integrated system or as manual contact based measurements by a user. A 3D probe is introduced as the user holds the probe in his hand and moves the probe tip over the object. The X, Y, and Z coordinates of the probe tip are measured in real-time with high accuracy. In this paper, a new approach of robot-calibration and teaching system is introduced by implementing a 3D measurement system for measuring and tracking an object with motions in up to six degrees of freedom. The general concept and kinematics of the metrology system as well as the derivations of an error budget for the general device are described. Several experimental results of geometry and its related error identification for an easy compensation / teaching method on an industrial robot will also be included.

Effect of Device Rigidity and Physiological Loading on Spinal Kinematics after Dynamic Stabilization : An In-Vitro Biomechanical Study

  • Chun, Kwonsoo;Yang, Inchul;Kim, Namhoon;Cho, Dosang
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권5호
    • /
    • pp.412-418
    • /
    • 2015
  • Objective : To investigate the effects of posterior implant rigidity on spinal kinematics at adjacent levels by utilizing a cadaveric spine model with simulated physiological loading. Methods : Five human lumbar spinal specimens (L3 to S1) were obtained and checked for abnormalities. The fresh specimens were stripped of muscle tissue, with care taken to preserve the spinal ligaments and facet joints. Pedicle screws were implanted in the L4 and L5 vertebrae of each specimen. Specimens were tested under 0 N and 400 N axial loading. Five different posterior rods of various elastic moduli (intact, rubber, low-density polyethylene, aluminum, and titanium) were tested. Segmental range of motion (ROM), center of rotation (COR) and intervertebral disc pressure were investigated. Results : As the rigidity of the posterior rods increased, both the segmental ROM and disc pressure at L4-5 decreased, while those values increased at adjacent levels. Implant stiffness saturation was evident, as the ROM and disc pressure were only marginally increased beyond an implant stiffness of aluminum. Since the disc pressures of adjacent levels were increased by the axial loading, it was shown that the rigidity of the implants influenced the load sharing between the implant and the spinal column. The segmental CORs at the adjacent disc levels translated anteriorly and inferiorly as rigidity of the device increased. Conclusion : These biomechanical findings indicate that the rigidity of the dynamic stabilization implant and physiological loading play significant roles on spinal kinematics at adjacent disc levels, and will aid in further device development.

실내환경에서의 2 차원/ 3 차원 Map Modeling 제작기법 (A 2D / 3D Map Modeling of Indoor Environment)

  • 조상우;박진우;권용무;안상철
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.355-361
    • /
    • 2006
  • In large scale environments like airport, museum, large warehouse and department store, autonomous mobile robots will play an important role in security and surveillance tasks. Robotic security guards will give the surveyed information of large scale environments and communicate with human operator with that kind of data such as if there is an object or not and a window is open. Both for visualization of information and as human machine interface for remote control, a 3D model can give much more useful information than the typical 2D maps used in many robotic applications today. It is easier to understandable and makes user feel like being in a location of robot so that user could interact with robot more naturally in a remote circumstance and see structures such as windows and doors that cannot be seen in a 2D model. In this paper we present our simple and easy to use method to obtain a 3D textured model. For expression of reality, we need to integrate the 3D models and real scenes. Most of other cases of 3D modeling method consist of two data acquisition devices. One for getting a 3D model and another for obtaining realistic textures. In this case, the former device would be 2D laser range-finder and the latter device would be common camera. Our algorithm consists of building a measurement-based 2D metric map which is acquired by laser range-finder, texture acquisition/stitching and texture-mapping to corresponding 3D model. The algorithm is implemented with laser sensor for obtaining 2D/3D metric map and two cameras for gathering texture. Our geometric 3D model consists of planes that model the floor and walls. The geometry of the planes is extracted from the 2D metric map data. Textures for the floor and walls are generated from the images captured by two 1394 cameras which have wide Field of View angle. Image stitching and image cutting process is used to generate textured images for corresponding with a 3D model. The algorithm is applied to 2 cases which are corridor and space that has the four wall like room of building. The generated 3D map model of indoor environment is shown with VRML format and can be viewed in a web browser with a VRML plug-in. The proposed algorithm can be applied to 3D model-based remote surveillance system through WWW.

  • PDF

뇌졸중 환자의 로봇 재활 치료를 위한 실시간, 동시 및 비례형 근전도 제어 (Real-Time, Simultaneous and Proportional Myoelectric Control for Robotic Rehabilitation Therapy of Stroke Survivors)

  • 정영진;박혜연
    • 재활치료과학
    • /
    • 제7권1호
    • /
    • pp.79-88
    • /
    • 2018
  • 목적 : 본 연구에서는 뇌졸중 환자의 치료 효과를 증진시키기 위한 방법으로, 로봇 기반에 연속적이며, 실시간으로 환자의 의지에 따른 표면 근전도 신호에 비례한 제어가 가능한 최적 알고리즘을 구현 및 재활로봇과 PC소프트웨어에 적용기술을 개발하였다. 연구방법 : 뇌졸중 환자의 치료를 위한 재활로봇 제어 알고리즘 개발을 위해서 본 연구에서는 선형 재귀모델을 이용하였다. 또한, 이를 PC 소프트웨어에 적용하여 실제 근전도 신호에 비례하여 게임을 진행할 수 있도록 환경을 구축하였으며, 이를 활용하여 모의 훈련을 진행하였다. 결과 : 모의실험 결과 실제 움직인 위치와 선형 재귀모델로부터 추정된 위치의 결과가 상당히 유사하게 나타나는 것을 확인할 수 있었다. 또한 3명의 피험자를 대상으로 실험 한 결과, 3번의 각기 다른 시도에 따라 훈련이 진행되면서 그 결과가 좋아짐을 확인할 수 있었다. 결론 : 본 연구에서는 재활로봇에 적용 가능한 실시간으로 동작하는 근전도에 비례한 움직임을 유도해 낼 수 있는 선형 재귀 모델을 개발하였다. 또한, 이를 활용한 소프트웨어도 함께 구축하여 그 활용 가능성이 높음을 확인하였다. 향후 실제 재활로봇에 적용하여 자가-재활 및 원격재활 로봇에 기본 알고리즘으로 널리 활용될 수 있을 것이라 기대된다.