• Title/Summary/Keyword: Robotic

Search Result 1,496, Processing Time 0.024 seconds

Adaptive Tracking of Uncertain Robotic Systems (불확실한 로보트 시스템의 적응제어)

  • 김홍석;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.944-955
    • /
    • 1990
  • A high-performance robotic controller is proposed for uncertain robots by using an adaptive control method, which guarantees the boundedness of uncertain systems with partially known uncertainty bounds. In order to improve the tracking performance of the robotic controller, a linear compensator is introduced to the robotic system which has been linearized via a nonlinear feedback. The above adaptive method is then utilized to guarantee the ultimate boundedness of the tracking errors. The performance of the robotic controller is compared with that of the computed torque method by computer simulations under uncertain environments. The simulation results show that the proposed method gives better performance than the computed torque method. Since the proposed method has a small number of parameters to be estimated, the controller is simpler to implement than other existing adaptive controller for robots. Hence, the proposed robotic control method is expected to be well suited for high-performance operation of robots under uncertain environment.

  • PDF

Towards a Ubiquitous Robotic Companion: Design and Implementation of Ubiquitous Robotic Service Framework

  • Ha, Young-Guk;Sohn, Joo-Chan;Cho, Young-Jo;Yoon, Hyun-Soo
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.666-676
    • /
    • 2005
  • In recent years, motivated by the emergence of ubiquitous computing technologies, a new class of networked robots, ubiquitous robots, has been introduced. The Ubiquitous Robotic Companion (URC) is our conceptual vision of ubiquitous service robots that provide users with the services they need, anytime and anywhere in ubiquitous computing environments. To realize the vision of URC, one of the essential requirements for robotic systems is to support ubiquity of services: that is, a robot service must be always available even though there are changes in the service environments. Specifically robotic systems need to be automatically interoperable with sensors and devices in current service environments, rather than statically preprogrammed for them. In this paper, the design and implementation of a semantic-based ubiquitous robotic space (SemanticURS) is presented. SemanticURS enables automated integration of networked robots into ubiquitous computing environments exploiting Semantic Web Services and AI-based planning technologies.

  • PDF

A Review and Outlook of Robotic Software Frameworks (로봇 소프트웨어 프레임워크 동향과 발전방향)

  • Choi, Byoung-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • Robotic software has been dramatically complicated as performing intelligent service tasks. These types of robots demand a very powerful software framework to make them easy. Robotic software framework means an integrated software environment that simplifies jobs of robotic software engineer by providing tools, reusable components, and runtime environments. Finally it reduces the project cost. There are lots of works related with them. Among them we focus on five frameworks that are MSRDS, ERSP, OROCOS, OpenRTM, and OPRoS. In terms of intelligent service robot, the study on robotic software frameworks is very important. And outlook on them is also very important in the sense of that the robotic software frameworks should be used to initiate service robot market.

Robotic Surgery for Lung Cancer

  • Ambrogi, Marcello C.;Fanucchi, Olivia;Melfi, Franco;Mussi, Alfredo
    • Journal of Chest Surgery
    • /
    • v.47 no.3
    • /
    • pp.201-210
    • /
    • 2014
  • During the last decade the role of minimally invasive surgery has been increased, especially with the introduction of the robotic system in the surgical field. The most important advantages of robotic system are represented by the wristed instrumentation and the depth perception, which can overcome the limitation of traditional thoracoscopy. However, some data still exist in literature with regard to robotic lobectomy. The majority of papers are focused on its safety and feasibility, but further studies with long follow-ups are necessary in order to assess the oncologic outcomes. We reviewed the literature on robotic lobectomy, with the main aim to better define the role of robotic system in the clinical practice.

Effects of the Latest Robotic Horse-riding for Low Back Pain : Narrative Review

  • LEE, Jae-Hyuk
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.4 no.4
    • /
    • pp.31-34
    • /
    • 2021
  • Purpose: The purpose of this study is to review health-care program using the recent robotic horse-riding technology and its clinical effects for chronic low back pain. Research design, data and methodology: Recent clinical articles were determined under three inclusion criteria for in-depth review: 1) article that is published within 1 year, 2) article that includes the detailed explanation of health-care program using robotic horse-riding, 3) the article that deals with chronic low back pain during more than 6 months. Results: As a result, the finally-determined two articles demonstrated the clinical effects of robotic horse-riding statistically on pain intensity, low back muscle strength, spinal alignment, and fear-avoidance belief. Conclusions: After in-depth review, I concluded that health-care program using robotic horse-riding for chronic low back pain needs to be provided at low-intensity (e.g. less than 6km/h horse walking program) in the beginning of health-care for improving their motor control ability, then, at the increased intensity for strengthening core muscles.

Development of Bioinspired Robotic Gripping Technology for Gripping Rough & Wet Surfaces based on Tactile Sensing (촉각센싱기반 거칠고 젖은 표면 파지가 가능한 생체모사 로봇용 그리핑 기술 개발)

  • Kim, Da Wan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.282-287
    • /
    • 2022
  • High shear adhesion on wet and rough surfaces and tactile feedback of gripping forces are highly important for realizing robotic gripper systems. Here, we propose a bioinspired robotic gripper with highly shear adhesion and sensitive pressure sensor for tactile feedback systems. To achieve them, we fabricated multi-walled carbon nanotube sensing layer on a thin polymeric adhesive layer of polydimethylsiloxane. With densely hexagonal-packed microstructures, the pressure sensor achieved 9 times the sensing property of a sensor without microstructures. We then assembled hexagonal microstructures inspired by the toe pads of a tree frog, giving strong shear adhesion under both dry and wet surfaces such as silicon (42 kPa for dry and ~30 kPa for underwater conditions) without chemical-residues after detachment. Our robotic gripper can prevent damage to weak or smooth surfaces that can be damaged at low pressure through pressure signal feedback suggesting a variety of robotic applications.

Computer aided design system for robotic painting line (동장공정의 로보틱자동화를 위한 설계지원 시스템)

  • Suh, Suk-Hwan;Cho, Jung-Hoon;Kang, Dae-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.171-179
    • /
    • 1994
  • For successful implementation of robotic painting system, a structured design and analysis procedure is necessary. In designing robotic system, both functional and economical feasibility should be investigated. As the robotization is complicated task involving implemen- tation details (such as robot selection, accessory design, and spatial layout) together with operation details, the computer aided design and analysis method should be sought. However, conventional robotic design systems and off-line programming systems cannot accommodate these inquiries in a unified fashion. In this research, we develop an interactive design support system for robotization of a cycle painting line. With the developed system called SPRPL (Simulation Package for Robotic Painting Line) users can design the painting objects (via FRAME module), select robot model (ROBOT), design the part hanger (FEEDER), and arrange the workcell. After motion programming (MOTION), the design is evaluated in terms of: a) workpace analysis, b) coating thickness analysis, and c) cycle time (ANALYSIS).

  • PDF

Preliminary study on application of augmented reality visualization in robotic thyroid surgery

  • Lee, Dongheon;Kong, Hyoun-Joong;Kim, Donguk;Yi, Jin Wook;Chai, Young Jun;Lee, Kyu Eun;Kim, Hee Chan
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.6
    • /
    • pp.297-302
    • /
    • 2018
  • Purpose: Increased robotic surgery is attended by increased reports of complications, largely due to limited operative view and lack of tactile sense. These kinds of obstacles, which seldom occur in open surgery, are challenging for beginner surgeons. To enhance robotic surgery safety, we created an augmented reality (AR) model of the organs around the thyroid glands, and tested the AR model applicability in robotic thyroidectomy. Methods: We created AR images of the thyroid gland, common carotid arteries, trachea, and esophagus using preoperative CT images of a thyroid carcinoma patient. For a preliminary test, we overlaid the AR images on a 3-dimensional printed model at five different angles and evaluated its accuracy using Dice similarity coefficient. We then overlaid the AR images on the real-time operative images during robotic thyroidectomy. Results: The Dice similarity coefficients ranged from 0.984 to 0.9908, and the mean of the five different angles was 0.987. During the entire process of robotic thyroidectomy, the AR images were successfully overlaid on the real-time operative images using manual registration. Conclusion: We successfully demonstrated the use of AR on the operative field during robotic thyroidectomy. Although there are currently limitations, the use of AR in robotic surgery will become more practical as the technology advances and may contribute to the enhancement of surgical safety.

TRACKING LIFT-PATHS OF A ROBOTIC TOWERCRANE WITH ENCODER SENSORS

  • Suyeul Park;Ghang, Lee;Joonbeom cho;Sungil Hham;Ahram Han;Taekwan Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.250-256
    • /
    • 2009
  • This paper presents a robotic tower-crane system using encoder and gyroscope sensors as path tracking devices. Tower crane work is often associated with falling accidents and industrial disasters. Such problems often incur a loss of time and money for the contractor. For this reason, many studies have been done on an automatic tower crane. As a part of 5-year 23-million-dollar research project in Korea, we are developing a robotic tower crane which aims to improve the safety level and productivity. We selected a luffing tower crane, which is commonly used in urban construction projects today, as a platform for the robotic tower crane system. This system comprises two modules: the automated path planning module and the path tracking module. The automated path planning system uses the 3D Cartesian coordinates. When the robotic tower crane lifts construction material, the algorithm creates a line, which represents a lifting path, in virtual space. This algorithm seeks and generates the best route to lift construction material while avoiding known obstacles from real construction site. The path tracking system detects the location of a lifted material in terms of the 3D coordinate values using various types of sensors including adopts encoder and gyroscope sensors. We are testing various sensors as a candidate for the path tracking device. This specific study focuses on how to employ encoder and gyroscope sensors in the robotic crane These sensors measure a movement and rotary motion of the robotic tower crane. Finally, the movement of the robotic tower crane is displayed in a virtual space that synthesizes the data from two modules: the automatically planned path and the tracked paths. We are currently field-testing the feasibility of the proposed system using an actual tower crane. In the next step, the robotic tower crane will be applied to actual construction sites with a following analysis of the crane's productivity in order to ascertain its economic efficiency.

  • PDF

Effects of NMES and Horseback Riding Using a Robotic Device on the Trunk Muscle Activity and Gross Motor Function in Children with Spastic Diplegia

  • Park, Shin-Jun;Youn, Pong-Sub
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.4
    • /
    • pp.123-128
    • /
    • 2018
  • Purpose: This study examined the effects of neuromuscular electrical stimulation (NMES) and horseback riding using a robotic device on the trunk muscle activity and gross motor function in children with spastic diplegia. Methods: Children with spastic diplegia were divided into two groups: an experimental group (NMES and horseback riding using a robotic device [n=10]) and a control group (placebo NMES and horseback riding using a robotic device [n=10]). Each group received general physical therapy and occupational therapy. Each intervention involved the administration of NMES for 15 minutes and horseback riding using robotic device therapy for 15 minutes three times a week for 4 weeks. The evaluation included both the rectus abdominis muscles (RA), external oblique muscles (EO), thoracic paraspinal muscles (TP), and lumbar paraspinal muscles (LP) activity and GMFM. Results: The RA, EO, TP, and LP muscle activity, GMFM C, D, and E were increased significantly in the experimental and control groups. A significant increase in both the TP muscle activity and GMFM D was observed in the experimental group compared to the control group. Conclusion: This study showed that horseback riding using a robotic device is an effective intervention for trunk muscle activity and GMFM in children with spastic diplegia. However, if NMES is added to the back muscles, it is possible to further increase the thoracic paraspinal muscle activity and standing ability.