• 제목/요약/키워드: Robot-based Learning

검색결과 482건 처리시간 0.037초

A Study on an Intelligent Motion Control of Mobile Robot Based on Iterative Learning for Smart Factory

  • Im, Oh-Duck;Kim, Hee-Jin;Kang, Da-Bi;Kim, Min-Chan;Han, Sung-Hyun
    • 한국산업융합학회 논문집
    • /
    • 제25권4_1호
    • /
    • pp.521-531
    • /
    • 2022
  • This study proposed a new approach to intelligent control of a mobile robot system by back properpagation based on multi-layer neural network. A experiment result is given in which some artificial assumptions about the linear and the angluar velocities of mobile robots from recent literature are dropped. In this study, we proposed a new thinique to impliment the real time conrol of he position and velocity of mobile robots. With the proposed control techinique, mobile robots can now globally follow any path such as a straight line, a circle and the path approaching th toe origin using proposed controller. Computer simulations are presented, which confirm the effectiveness of the proposed control algorithm. Moreover, practical experimental results concerning the real time control are reported with several real line constraints for mobile robots with two wheel driving.

Stable Path Tracking Control of a Mobile Robot Using a Wavelet Based Fuzzy Neural Network

  • Oh, Joon-Seop;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권4호
    • /
    • pp.552-563
    • /
    • 2005
  • In this paper, we propose a wavelet based fuzzy neural network (WFNN) based direct adaptive control scheme for the solution of the tracking problem of mobile robots. To design a controller, we present a WFNN structure that merges the advantages of the neural network, fuzzy model and wavelet transform. The basic idea of our WFNN structure is to realize the process of fuzzy reasoning of the wavelet fuzzy system by the structure of a neural network and to make the parameters of fuzzy reasoning be expressed by the connection weights of a neural network. In our control system, the control signals are directly obtained to minimize the difference between the reference track and the pose of a mobile robot via the gradient descent (GD) method. In addition, an approach that uses adaptive learning rates for training of the WFNN controller is driven via a Lyapunov stability analysis to guarantee fast convergence, that is, learning rates are adaptively determined to rapidly minimize the state errors of a mobile robot. Finally, to evaluate the performance of the proposed direct adaptive control system using the WFNN controller, we compare the control results of the WFNN controller with those of the FNN, the WNN and the WFM controllers.

Learning of Emergent Behaviors in Collective Virtual Robots using ANN and Genetic Algorithm

  • Cho, Kyung-Dal
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.327-336
    • /
    • 2004
  • In distributed autonomous mobile robot system, each robot (predator or prey) must behave by itself according to its states and environments, and if necessary, must cooperate with other robots in order to carry out a given task. Therefore it is essential that each robot have both learning and evolution ability to adapt to dynamic environment. This paper proposes a pursuing system utilizing the artificial life concept where virtual robots emulate social behaviors of animals and insects and realize their group behaviors. Each robot contains sensors to perceive other robots in several directions and decides its behavior based on the information obtained by the sensors. In this paper, a neural network is used for behavior decision controller. The input of the neural network is decided by the existence of other robots and the distance to the other robots. The output determines the directions in which the robot moves. The connection weight values of this neural network are encoded as genes, and the fitness individuals are determined using a genetic algorithm. Here, the fitness values imply how much group behaviors fit adequately to the goal and can express group behaviors. The validity of the system is verified through simulation. Besides, in this paper, we could have observed the robots' emergent behaviors during simulation.

A Voice Controlled Service Robot Using Support Vector Machine

  • Kim, Seong-Rock;Park, Jae-Suk;Park, Ju-Hyun;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1413-1415
    • /
    • 2004
  • This paper proposes a SVM(Support Vector Machine) training algorithm to control a service robot with voice command. The service robot with a stereo vision system and dual manipulators of four degrees of freedom implements a User-Dependent Voice Control System. The training of SVM algorithm that is one of the statistical learning theories leads to a QP(quadratic programming) problem. In this paper, we present an efficient SVM speech recognition scheme especially based on less learning data comparing with conventional approaches. SVM discriminator decides rejection or acceptance of user's extracted voice features by the MFCC(Mel Frequency Cepstrum Coefficient). Among several SVM kernels, the exponential RBF function gives the best classification and the accurate user recognition. The numerical simulation and the experiment verified the usefulness of the proposed algorithm.

  • PDF

자율주행 이동로봇의 실시간 퍼지신경망 제어 (Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot)

  • 정동연;김종수;한성현
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.155-162
    • /
    • 2003
  • We propose a new technique far real-tine controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Caussian function as a unit function in the fuzzy neural network. and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-foray. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

언어, 교시 및 학습능력 관점에서 본 퍼스널 로봇의 평가 기준 설정에 대한 연구 (A Study on the Evaluation Methods for s Personal Robot from the Viewpoints of Language, Teaching, and Learning Ability)

  • 김용준;이건영;김진오
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2465-2467
    • /
    • 2004
  • In this paper we present the guideline to evaluate the easiness of using personal robots and their learning abilities based on the analysis of their built-in commands, user interfaces, and intelligences. Recently, we are breathing with robots that can be able to do lots of roles. cleaning, security, pets and education in real life. They can be classified as home robots, guide robots, service robots, robot pets, and so on. There are, however, no standards to evaluate their ability, so it is not easy to select an appropriate robot when a user wants to buy it. Thus, we present, as a guideline that can be a standard for the evaluation of the personal robots, the standards by means of analyzing existing personal robots and results of the recent research works. We will, also, describe how to apply the evaluation method th the personal robot.

  • PDF

퍼지신경망을 이용한 자율주행 이동로봇의 실시간 제어 (Real-Time Control for Autonomous Cruise of Mobile Robot Using Fuzzy Neural Network)

  • 정동연;이우송;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1697-1700
    • /
    • 2003
  • We propose a new technique for real-time controller design of a autonomous cruise mobile robot with three drive wheels. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network, and a back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The control performance of the proposed controller is illustrated by performing the computer simulation for trajectory tracking of the speed and azimuth of a autonomous cruise mobile robot driven by three independent wheels.

  • PDF

조향규칙 학습을 이용한 자율주행로봇의 지역경로계획설계 (Local Path Planning Design of Autonomous Mobile Robot using The Direction Indicator Rules Learning)

  • 박경석;최한수;정헌
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.25-28
    • /
    • 2002
  • The path planning of autonomous mobile robot use two method. One is global path planning and another is local path planning. In this paper, We study the local path planning of autonomous mobile robot move in unknown enviroment. This local path planning is based on neural network using the direction indicator rules learning. also the system is made up of sensor system. The motion control system for real-time execution. The experimental results show that the developed direction indicator system operates properly and strongly at circumstance.

  • PDF

Random Forest를 결정로직으로 활용한 로봇의 실시간 음향인식 시스템 개발 (A Real-Time Sound Recognition System with a Decision Logic of Random Forest for Robots)

  • 송주만;김창민;김민욱;박용진;이서영;손정관
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.273-281
    • /
    • 2022
  • In this paper, we propose a robot sound recognition system that detects various sound events. The proposed system is designed to detect various sound events in real-time by using a microphone on a robot. To get real-time performance, we use a VGG11 model which includes several convolutional neural networks with real-time normalization scheme. The VGG11 model is trained on augmented DB through 24 kinds of various environments (12 reverberation times and 2 signal to noise ratios). Additionally, based on random forest algorithm, a decision logic is also designed to generate event signals for robot applications. This logic can be used for specific classes of acoustic events with better performance than just using outputs of network model. With some experimental results, the performance of proposed sound recognition system is shown on real-time device for robots.

수월성 교육을 위한 초등학교 로봇프로그래밍 교육과정 개발과 적용 (Development of Elementary School Curriculum Relating to Robot Programming for Excellence Education and its Application)

  • 유승한;문외식
    • 정보교육학회논문지
    • /
    • 제11권1호
    • /
    • pp.59-66
    • /
    • 2007
  • 본 연구는 로봇을 활용한 프로그래밍학습이 초등학생 및 초등영재들에게 창의력 향상에 도움을 주는 과학적인 학습도구라 판단되어 교육과정을 개발하였다. 이를 기초로 교재를 작성하고 현장에 직접 적용하여 그 결과를 분석하였다. 교육과정과 교재의 내용은 다양한 문제 상황에 맞는 로봇을 직접 제작하고 프로그래밍하는 과정(모두 6단계)으로 구분하고 학습수준에 맞게 편집함으로서 초등학생들이 로봇과 프로그래밍에 흥미와 관심을 가질 수 있도록 하였다. 로봇교육을 현장에 적용한 결과 창의성교육 도구로서 긍정적인 학습도구로 평가되었다. 또한, 수월성교육을 위한 학습도구로서 몇 가지 보완해야 할 결론도 함께 얻었다.

  • PDF