• Title/Summary/Keyword: Robot-automation

Search Result 630, Processing Time 0.035 seconds

Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot

  • Kim, Gab-Soon
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.419-428
    • /
    • 2007
  • This paper describes the development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot's wrist and ankle. In order to accurately push and pull an object with an intelligent robot's hand, and in order to safely walk with an intelligent robot's foot, the robot's wrist and ankle should measure three forces Fx, Fy, and Fz, and three moments Mx, My, and Mz simultaneously from the mounted six-axis force/moment sensor to the intelligent robot's wrist and ankle. Unfortunately, the developed six-axis force/moment sensor utilized in other industrial fields is not proper for an intelligent robot's wrist and ankle in the size and the rated output of the six-axis force/moment sensor. In this paper, the structure of a six-axis force/moment sensor with rectangular taper beams was newly modeled for an intelligent robot's wrist and ankle, and the sensing elements were designed by using the derived equations, following which the six-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements. Moreover, the characteristic test of the developed sensor was carried out by using the six-component force/moment sensor testing machine. The rated outputs from the derived equations agree well with those from the experiments. The interference error of the sensor is less than 2.87%.

An Image-Guided Robotic Surgery System for Spinal Fusion

  • Chung Goo Bong;Kim Sungmin;Lee Soo Gang;Yi Byung-Ju;Kim Wheekuk;Oh Se Min;Kim Young Soo;So Byung Rok;Park Jong Il;Oh Seong Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.30-41
    • /
    • 2006
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods for spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Some experiments employing the developed robotic surgery system are conducted. The experimental results confirm that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to respiration.

Kinematic Calibration of a Cartesian Parallel Manipulator

  • Kim, Han-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.453-460
    • /
    • 2005
  • In this paper, a prototype Cartesian Parallel Manipulator (CPM) is demonstrated, in which a moving platform is connected to a fixed frame by three PRRR limbs. Due to the orthogonal arrangement of the three prismatic joints, it behaves like a conventional X-Y-Z Cartesian robot. However, because all the linear actuators are mounted at the fixed frame, the manipulator may be suitable for applications requiring high speed and accuracy. Using a geometric method and the practical assumption that three revolute joint axes in each limb are parallel to one another, a simple forward kinematics for an actual model is derived, which is expressed in terms of a set of linear equations. Based on the error model, two calibration methods using full position and length measurements are developed. It is shown that for a full position measurement, the solution for the calibration can be obtained analytically. However, since a ball-bar is less expensive and sufficiently accurate for calibration, the kinematic calibration experiment on the prototype machine is performed by using a ball-bar. The effectiveness of the kinematic calibration method with a ball-bar is verified through the well­known circular test.

Camera Calibration and Pose Estimation for Tasks of a Mobile Manipulator (모바일 머니퓰레이터의 작업을 위한 카메라 보정 및 포즈 추정)

  • Choi, Ji-Hoon;Kim, Hae-Chang;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2020
  • Workers have been replaced by mobile manipulators for factory automation in recent years. One of the typical tasks for automation is that a mobile manipulator moves to a target location and picks and places an object on the worktable. However, due to the pose estimation error of the mobile platform, the robot cannot reach the exact target position, which prevents the manipulator from being able to accurately pick and place the object on the worktable. In this study, we developed an automatic alignment system using a low-cost camera mounted on the end-effector of a collaborative robot. Camera calibration and pose estimation methods were also proposed for the automatic alignment system. This algorithm uses a markerboard composed of markers to calibrate the camera and then precisely estimate the camera pose. Experimental results demonstrate that the mobile manipulator can perform successful pick and place tasks on various conditions.

Power Line Communication Method with Splitting of Power Transmission Interval (전력전송구간을 분할하여 데이터 신호를 전송하는 전력선 통신방법)

  • Cho, Jae-Seung;Hwang, Il-Kyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.252-258
    • /
    • 2012
  • This paper studies the power line communication method with splitting of power transmission interval in the small DC power system using pulse width modulation. The method divides the entire interval for transmitting power and data into a power transmission interval where power is supplied to a load and a data transmission interval where power from the power supply to the load is disconnected. The circuit is designed for the implementation to separate the power line from the power supply and load. The results of tests show the feasibility of the proposed power line communication method.

Development of Mobile Robot for Welding of Lattice Type - Mobile Speed Control and Seam Tracking Control - (격자형 용접 주행로봇의 개발 ( 제1보 : 주행제어 및 용접선 추적제어 ))

  • 감병오;전양배;강치정;주갑영;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.34-36
    • /
    • 2000
  • It is difficult to realize automation of welding of lattice type in shipbuilding and assembly processing of shipbuilding and steel structures. Usually, the welding parts of lattice type are welded manually. So there are limitations in continuous and stable quality controls and in increase in productivity because the welding quality depends on worker's skill. That is, automation in welding is necessary. This paper shows shows the development results of a moblie robot for welding of lattice type. Specially. algorithms for its mobile speed and seam tracking controls are introduced.

  • PDF

3D scanner's measurement path establishment automation by robot simulator

  • Jang, Pyung-Su;Lee, Sang-Heon;Chang, Min-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2179-2182
    • /
    • 2005
  • Recently, optical 3D scanners are frequently used for inspection of parts, assembly and manufacturing tooling. One of the advantages is being able to measure a large area fast and accurately. Owing to recent advances in high-resolution image sensing technology, high power illumination technology, and high speed microprocessors, the accuracy and resolution of optical 3D scanners are being improved rapidly. In order to measure the entire geometry of objects, multiple scans have to be performed in various setups by moving either the objects or the scanner. This paper introduces novel methods to measure the entire geometry of objects by automatically changing the setups and then aligning the scanned data in a single coordinate system.

  • PDF

Scientific Inspection Method of PC Box Bridges Using Remote Control Tarantula Robot (원격제어 로봇을 이용한 PSC Box교량 내부 점검방법)

  • Lee, Byeong-Ju;Shin, Jae-In;Seo, Jin-Won;Lee, Ji-Yeong;Park, Yeong-Ha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.561-562
    • /
    • 2009
  • The needs for inspection automation for more systematic and efficient maintenance were gradually increased by several inspectors and researchers. With the robotic and digital image processing technologies, in this paper, new inspection automation system were introduced and tested in the real PSC box crack inspection procedures The configuration and scheme of robotic inspection and digital image processing algorithms were represented. The designed robotic sensors and image processing system were tested and the feasibility and possibility of the robot based automatic inspection were approved in the real PSC box bridges.

  • PDF

Development of a Vertically Moving Scenario of Robotic Exterior Wall Cleaning for High-rised Building (고층 건축을 위한 수직외벽 청소로봇의 작업 시나리오 개발)

  • Kim, Kyoon-Tai;Kim, Chang-Han;Han, Jae-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.195-196
    • /
    • 2011
  • Recently, the number of high-rise buildings has been on the rise, which has meant that maintenance cost has increased by two and three times, along with the increase in the construction cost. It is suggested that the use of an auto-cleaning robot could increase the productivity and safety of cleaning work, which is mostly done outside of a building. In particular, the guide rail on a high-rise building could be useful in this capacity, as it has the advantage of not being significantly influenced by factors of the external environment, including wind pressure. For this reason, this research is preliminary research into a cleaning automation for a high-rise building, and aims to draw up a scenario for the vertically moving robot.

  • PDF

Optimal Trajectory Control for RobortManipulators using Evolution Strategy and Fuzzy Logic

  • Park, Jin-Hyun;Kim, Hyun-Sik;Park, Young-Kiu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-20
    • /
    • 1999
  • Like the usual systems, the industrial robot manipulator has some constraints for motion. Usually we hope that the manipulators move fast to accomplish the given task. The problem can be formulated as the time-optimal control problem under the constraints such as the limits of velocity, acceleration and jerk. But it is very difficult to obtain the exact solution of the time-optimal control problem. This paper solves this problem in two steps. In the first step, we find the minimum time trajectories by optimizing cubic polynomial joint trajectories under the physical constraints using the modified evolution strategy. In the second step, the controller is optimized for robot manipulator to track precisely the optimized trajectory found in the previous step. Experimental results for SCARA type manipulator show that the proposed method is very useful.

  • PDF