• 제목/요약/키워드: Robot-Arm Control

검색결과 400건 처리시간 0.022초

Dual-Arm로봇의 자기구성 퍼지제어 (Self-Organization Fuzzy Control of Dual-Arm Robot)

  • 김홍래;김종수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.201-206
    • /
    • 2003
  • In this paper, it is presented a new technique to the design and real-time implementation of fuzzy control system based-on digital signal processors in order to improve the precision and robustness for system of industrial robot. Fuzzy control has emerged as one of the most active and fruitful areas for research in the applications of fuzzy set theory, especially in the real of industrial processes. In this thesis, a self-organizing fuzzy controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variable of the controller, In the synthesis of a FLC, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult, SOFC is proposed fir a hierarchical control structure consisting of basic level and high level that modify control rules. The proposed SOFC scheme is simple in structure, fast in computation and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for robot with eight joints.

  • PDF

직접교시에 의한 직관적인 양팔로봇 작업 생성 (Intuitive Programming of Dual-Arm Robot Tasks using Kinesthetic Teaching Method)

  • 김기현;박현준;배지훈;박재한;이동혁;박재흥;경진호;백문홍
    • 제어로봇시스템학회논문지
    • /
    • 제22권8호
    • /
    • pp.656-664
    • /
    • 2016
  • While anthropomorphic robots are gaining interest, dual-arm robots are widely used in the industrial environment. Many methods exist in order to implement bimanual tasks by dual-arm robot. However, kinesthetic teaching is used in this paper. This paper suggests three different kinesthetic teaching methods that can implement most of the human task by the robot. The three kinesthetic teaching methods are joint level, task level, and contact level teaching. The task introduced in this paper is box packing, which is a popular and complex task in industrial environment. The task is programmed into the dual-arm robot by utilizing the suggested kinesthetic teaching method, and this paper claims that most tasks can be implemented by using the suggesting kinesthetic teaching methods.

상하지 연동된 새로운 보행재활 로봇의 설계 (Design of a Novel Gait Rehabilitation Robot with Upper and Lower Limbs Connections)

  • 윤정원;본단노반디;크리스티앤드
    • 제어로봇시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.672-678
    • /
    • 2008
  • This paper proposes a new rehabilitation robot with upper and lower limb connections for gait training. As humans change a walking speed, their nervous systems adapt muscle activation patterns to modify arm swing for the appropriate frequency. By analyzing this property, we can find a relation between arm swinging and lower limb motions. Thus, the lower limb motion can be controlled by the arm swing for walking speed adaptation according to a patent's intension. This paper deals with the design aspects of the suggested gait rehabilitation robot, including a trajectory planning and a control strategy. The suggested robot is mainly composed of upper limb and lower limb devices, a body support system. The lower limb device consists of a slider device and two 2-dof footpads to allow walking training at uneven and various terrains. The upper limb device consists of an arm swing handle and switches to use as a user input device for walking. The body support system will partially support a patient's weight to allow the upper limb motions. Finally, we showed simulation results for the designed trajectory and controller using a dynamic simulation tool.

신경회로를 이용한 6축 로보트의 역동력학적 토크제어 (Inverse Dynamic Torque Control of a Six-Jointed Robot Arm Using Neural networks)

  • 오세영;조문정;문영주
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.816-824
    • /
    • 1991
  • It is well known that dynamic control is needed for fast and accurate control. Neural networks are ideal for representing the strongly nonlinear relationship in the dynamic equations including complex unmodeled effects. It thus creates many advantages over conventional methods such as simple, fast and accurate control through neural network's inherent learning and massive parallelism. In this paper, dynamic control of the full six degrees of freedom of an industrial robot arm will be presented using neural networks. Moreover, through application to a real robot the usefulness of neurocontrol is demonstrated. The back propagation and feedback-error learning is used to train the neurocontroller. Simulated control of a PUMA 560 arm demonstrates that it moves at high speed with good accuracy and generalizes over untrained trajectories as well as adapt to unforseen load changes and sensor noise.

GA-fuzzy $P^2ID$ Control System for Flexible-joint Robot Arm

  • Tangcharoensuk, Teranun;Purahong, Boonchana;Sooraksa, Pitikhate
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.969-972
    • /
    • 2005
  • This paper presents a GA-fuzzy $P^2ID$ control system for the flexible-joint robot arm. This controller is designed based on the parameter adjustment using fuzzy logic and genetic algorithms. According to the simulations, the better performance has been achieved acquired that the robot moved smoothly and met its required objectives. The results of comparison between 8 parameters and 10 parameters can be conclusion that the 10 parameters have setting time little than 8 parameters. In usability can be use 8 or 10 parameters these one.

  • PDF

립모션 센서와 블루투스 통신을 이용한 원격 제어 로봇팔 (Remote Control Robot Arm Using Leap Motion Sensor and Bluetooth Communication)

  • 이재원;김한솔;김준호;배재혁;유창근
    • 한국전자통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.1127-1134
    • /
    • 2017
  • 본 연구에서는 사람이 접근하기 힘든 환경에서도 사용할 수 있는 로봇 팔이 사람의 손 동작에 따라 동작하는 로봇 팔 제어시스템을 구현하였다. 적외선 센서와, 영상인식 센서를 이용한 립모션 센서를 사용해 사람 손의 좌표를 추출 후 맵핑하고 블루투스 통신을 통하여 로봇 팔에게 전송하여 동작하도록 하였다.

자이로센서와 플렉스 센서를 이용한 이동형 로봇팔 원격 제어 (Remote Control of Movable Robot Arm using Gyro Sensor and Flex Sensor)

  • 장재석;김민수;김성진;이철근;박형근
    • 한국전자통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1205-1212
    • /
    • 2021
  • 재난상황이나 인명 구조, 위험물 처리와 위험지역 정찰 등 사람들이 하기 어려운 위험작업을 대신 처리해 실질적으로 많은 도움을 줄 수 있는 로봇들이 지속적으로 이슈가 되고 있다. 따라서 본 논문에서는 사람의 모션 의지를 로봇팔에 구현하여 상황에 따른 능동적인 대응이 가능하도록 한다. 또한 손동작에 따라 차량을 제어하여 이동성을 부여할 수 있는 이동형 로봇팔을 구현하고자 한다. 플렉스 센서와 자이로센서를 활용하여 컨트롤러를 제작하고 자이로센서 2개의 Roll과 Pitch 값을 조절하여 로봇팔의 각도를 제어하며 차량의 방향을 지정한다. 또한 플렉스 센서 3개의 레벨을 지정함으로써 손동작에 따라 모터가 동작되며 물체를 집고 이동할 수 있도록 로봇팔을 구현하였다.

로봇 팔의 뇌 신호로부터 유도된 3D 좌표 추적을 위한 Guidance Law 적용에 관한 연구 (A Study on Applying Guidance Laws in Developing Algorithm which Enables Robot Arm to Trace 3D Coordinates Derived from Brain Signal)

  • 김윤재;박성우;김원식;염홍기;서한길;이용우;방문석;정천기;오병모;김준식;김유단;김성완
    • 대한의용생체공학회:의공학회지
    • /
    • 제35권3호
    • /
    • pp.50-54
    • /
    • 2014
  • It is being tried to control robot arm using brain signal in the field of brain-machine interface (BMI). This study is focused on applying guidance laws for efficient robot arm control using 3D coordinates obtained from Magnetoencephalography (MEG) signal which represents movement of upper limb. The 3D coordinates obtained from brain signal is inappropriate to be used directly because of the spatial difference between human upper limb and robot arm's end-effector. The spatial difference makes the robot arm to be controlled from a third-person point of view with assist of visual feedback. To resolve this inconvenience, guidance laws which are frequently used for tactical ballistic missile are applied. It could be applied for the users to control robot arm from a first-person point of view which is expected to be more comfortable. The algorithm which enables robot arm to trace MEG signal is provided in this study. The algorithm is simulated and applied to 6-DOF robot arm for verification. The result was satisfactory and demonstrated a possibility in decreasing the training period and increasing the rate of success for certain tasks such as gripping object.

Robot Motion Regeneration based on Independent Arm Control System Design Method

  • Tran, Manh-Son;Han, Kyu-Il;Kim, Young-Bok
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.30-36
    • /
    • 2017
  • In robot industries, the request to obtain a high efficiency and accurately controlled electric actuator has been growing. Nevertheless, the effectiveness of electric actuators is significantly affected by the presence of factors such as nonlinearity, uncertain disturbance and unknown dynamics. Therefore, it makes difficult to derive an exact mathematical model of the controlled system. In this paper, a new method for easily recognizing and regenerating robot motions used in small size industries such as painting and welding parts is proposed. Instead of modeling the entire dynamic motion of the robot system, this method is based on the procedure of modeling and controller design for every arm individually. The proposed method does not require complex model and control system such that it gives easy working process to the small size industries. Based on this fact, in this research, the model and PID controller for every arm of the 3 DOF robot system are obtained separately. Some experimental results are implemented to validate the effectiveness of the proposed method.

계층적 모델링에 의한 두 팔 로봇의 상호충돌방지 실시간 경로제어 (Hierarchical Model-based Real-Time Collision-Free Trajectory Control for a Cual Arm Rrobot System)

  • 이지홍;원경태
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.461-468
    • /
    • 1997
  • A real-time collision-free trajectory control method for dual arm robot system is proposed. The proposed method is composed of two stages; one is to calculate the minimum distance between two robot arms and the other is to control the trajectories of the robots to ensure collision-free motions. The calculation of minimum distance between two robots is, also, composed of two steps. To reduce the calculation time, we, first, apply a simple modeling technique to the robots arms and determine the interested part of the robot arms. Next, we apply more precise modeling techniques for the part to calculate the minimum distance. Simulation results show that the whole algorithm runs within 0.05 second using Pentium 100MHz PC.

  • PDF