• 제목/요약/키워드: Robot system

검색결과 4,877건 처리시간 0.036초

로봇 착유시스템을 위한 다관절 매니퓰레이터 개발 (Development of a Multi-joint Robot Manipulator for Robot Milking System)

  • 김웅;이대원
    • Journal of Biosystems Engineering
    • /
    • 제30권5호
    • /
    • pp.293-298
    • /
    • 2005
  • The purpose of this study was the development of a multi-joint robot manipulator for milking robot system. The multi-joint robot manipulator was controlled by 5 drivers with driver controller through the position information obtained from the image processing system. The robot manipulator to automatically attach each teat cup to the teats of a milking cow was developed and it's motion was accurately measured with error rate. Results were as follows. 1. Maximum errors in position accuracy were 4mm along X-axis, 4.5mm along Y-axis and 0.9mm along Z-axis. Absolute distance errors were maximum 4.8mm, minimum 2.7mm, and average 3.6mm. 2. Errors of repeatability were maximum 3.0mm along X-axis, 3.0mm along Y-axis, and 0.5mm along Z-axis. Distance error values were maximum 3.2mm, minimum 2.2mm, and average 2.5mm. It is envisaged that multi-joint robot manipulator can be applicate to milking robot system being developed in consideration of the experiment results.

Development of a Pet Robot Chasing a Moving Person in Outdoor Environment

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Aoshima, Nobuharu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.67-72
    • /
    • 2005
  • In a park or street, we can see many people jogging or walking with their dogs that are chasing their masters. In this study, a pet robot that imitates dog's behavior is developed. The task of robot is to chase a person who is recognized as the master. The physical structure and the sensor system are designed for the task and environment. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a person who is jogging in outdoor environment like a park. A sensor system, which can detect relative position of the master to the robot in highly dynamic and hazardous worlds, is developed. This sensor system consists of a signal transmitter which is held by the master and ultrasonic sensor array which are mounted on the robot. The transmitter emits RF (radio frequency) and ultrasonic signals simultaneously. The ultrasonic sensor array detects the signals and calculates direction and distance between the robot and the transmitter. The developed RF-ultrasonic sensor is evaluated through experiments. A purely reactive behavior-based control architecture is used for the robot. The behavior control performance of the robot is assessed in outdoor and indoor tests.

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

Petri-Net을 이용한 효과적인 다중로봇 제어알고리즘의 구현 (Embodiment of Effective Multi-Robot Control Algorithm Using Petri-Net)

  • 선승원;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.906-916
    • /
    • 2003
  • A multi-robot control algorithm using Petri-Net is proposed for 5vs5 robot soccer. The dynamic environment of robot soccer is modeled by defining the place and transition of each robot and converting it into Petri-Net diagram. Once all the places and transitions of robots are represented by the Petri-Net model, their actions can be chosen according to the roles of robots and position of the ball in soccer game, e.g., offensive, defensive and goalie robot. The proposed modeling method is implemented for soccer robot system. The efficiency and applicability of the proposed multiple-robot control algorithm using Petri-Net are demonstrated through 5vs5 Middle League SimuroSot soccer game.

이동 로봇의 원격 주행 시스템 (Remote Navigation System for Mobile Robot)

  • 김종선;유영선;김성호;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.325-327
    • /
    • 2007
  • In this paper, we implement the internet- based remote control system for intelligent robot. For remote control of the robot, it uses the socket communication of the TCP/IP. It consists of- the user interface and the robot control interface. Robot control interface transmits the navigation and environmental informations of the robot into the user interface. In order to transmit the large environmental images, a JPEG compression algorithm is used. User interface displays the navigation status of the robot and transmits the navigation order into the robot control interface. Also, we propose the design method of the fuzzy controller using navigation data acquired by expert's knowledge or experience. To do this, we use virus-evolutionary genetic algorithm(VEGA). Finally, we have shown the proposed system can be operated through the real world experimentations.

  • PDF

메카트로닉스 교육을 위한 복싱 로봇 시스템의 개발 (Development of Boxing Robot System for Mechatronics Education)

  • 전풍우;장평수;주병규;조기호;정슬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.330-330
    • /
    • 2000
  • In this paper, as an entertainment robot the implementation of boxing robot system is presented for mechatronics education. In order for students to learn robot as a mechatronics system, boxing robot is a good model. The boxing robot consists of three parts: two link arms for punching, controller for actuating wheeled mobile robot, infrared rays sensors for the detection of he other robot and ring. The strategic algorithm for playing boxing is presented as wel as simple game rules.

  • PDF

Positioning Accuracy on Robot Self-localization by Real-time Indoor Positioning System with SS Ultrasonic Waves

  • Suzuki, Akimasa;Kumakura, Ken;Tomizuka, Daisuke;Hagiwara, Yoshinobu;Kim, Youngbok;Choi, Yongwoon
    • 동력기계공학회지
    • /
    • 제17권5호
    • /
    • pp.100-111
    • /
    • 2013
  • Indoor real-time positioning for multiple targets is required to realize human-robot symbiosis. This study firstly presents positioning accuracy on an autonomous mobile robot controlled by 3-D coordinates that is obtained by a real-time indoor positioning system with spread spectrum (SS) ultrasonic signals communicated by code-division multiple access. Although many positioning systems have been investigated, the positioning system with the SS ultrasonic signals can measure identified multiple 3-D positions in every 70 ms with noise tolerance and error within 100 mm. This system is also robust to occlusion and environmental changes. However, thus far, the positioning errors in an autonomous mobile robot, controlled by these systems using the SS ultrasonic signals, have not been evaluated as an experimental study. Therefore, a positioning experiment for trajectory control is conducted using an autonomous mobile robot and our positioning system. The effectiveness of this positioning method for robot self-localization is shown, from this experiment, because the average control error between the target position and the robot's position at 29 mm is obtained.

아아크 용접 자동화를 위한 태스크 레벨 자동 프로그래밍 시스템 개발 (Development of a task level automatic programming system for arc welding automation)

  • 박현자;이범희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1396-1399
    • /
    • 1996
  • With the progress in process automation, it becomes necessary that a robot should have various sophisticated capabilities. A robot programming language is a tool that can give a robot such capabilities without any change in robot architecture. Especially a task level automatic programming system enables a robot able to perform a job intelligently. Therefore anyone who is not an expert on welding or robot programming can easily use it. In this research, basic automatic welding program is combined with workspace information, which makes users do an arc welding job automatically.

  • PDF

Off-line programming sysytem을 위한 로보트운동계의 calibration (Calibration of robot kinematics for the off-line programming system)

  • 김문상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.511-517
    • /
    • 1988
  • Movement order program of robot operating program is generally made by teach-in method. Therefore in most cases it is sufficient as long as the robot system shows a reguired repeatability for the working conditions. But the trend in the robot application moves to the automatic generation of the working programs. A mathematical robot model similar to the reality is necessary for the analysis of the kinematic transformation of the robot system. The purposes of this paper are to make a better describing form and to suggest an automatic algorithm for kinematic parameter identification.

  • PDF

로봇시스템의 정밀 궤적 추적제어에 관한 연구 (A study on Precise Trajectory Tracking control of Robot system)

  • 이우송;김원일;양준석
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.82-89
    • /
    • 2015
  • This study proposes a new approach to design and control for autonomous mobile robots. In this paper, we describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This mes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. It is illustrated that the proposed system presents a desirable performance by a computer simulation and some experiments.