• Title/Summary/Keyword: Robot simulation

Search Result 1,699, Processing Time 0.032 seconds

A Collision Avoidance Scheme for Redundant Robot Manipulators (여유자유도를 갖는 로보트 머니퓰레이터의 충돌회피)

  • Lee, Jae-Man;Choi, Young-Kiu;Hwang, Chang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.409-411
    • /
    • 1991
  • This paper presents a collision avoidance scheme for redundant robot manipulators based on the Configuration Control Scheme. We set a center line through the free space. And we use the redundancy to put the robot links, around the center line as close as possible to avoid the collision with obstacles. Computer simulation shows the effectiveness of this approach.

  • PDF

Robust digital controller for robot manipulators

  • Ishihara, Tadashi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1671-1676
    • /
    • 1991
  • Direct digital design of computed torque controllers for a robot manipulator is discussed in this paper. A simple discrete-time model of the robot manipulator obtained by Euler's method is used for the design. Taking account of computation delay in the digital processor, we propose predictor-based designs of the PD and PID type controllers. The PID type controller is designed based on a modified version of the discrete-time integral controller proposed by Mita. For both controllers, the same formulas can be used to determine the feedback gains. A simulation example is presented to compare the robustness of the proposed controllers against physical parameter variations.

  • PDF

Reinforcement learning control of a mobile robot in home network environment

  • Kang, Dong-Oh;Lee, Jeunwoo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.209-212
    • /
    • 2003
  • The following paper deals with a control problem of a mobile robot in home network environment. The home network causes the mobile robot to communicate with sensors to get the sensor measurements and to be adapted to the environment changes. We adopt the reinforcement learning scheme for the solution to the problem, and show some simulation results.

  • PDF

Obstacle Avoidance and Path Planning for a Mobile Robot Using Single Vision System and Fuzzy Rule (모노비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.274-277
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

Design of an adaptive output feedback controller for robot manipulators (로보트 매니퓰레이터에 대한 출력궤환 적응제어기 설계)

  • 이강웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.734-738
    • /
    • 1996
  • An adaptive output feedback controller is designed for tracking control of an n-link robot manipulator with unknown load. High-gain observers with same structure as error dynamic systems are used to estimate joint velocities. The parameter adaptation is achieved by the smoothed projection algorithm. The control inputs are saturated outside a domain of interest. Simulation results on a 2-link manipulator illustrate that when the speed of the high-gain observer is sufficiently high, the proposed controller recovers the performance under state feedback control.

  • PDF

Robust control of robot manipulators using a decentralized control sheme (분산화 제어 기법을 이용한 로봇 매니퓰레이터의 강인 제어)

  • 최현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.581-584
    • /
    • 1996
  • This paper presents the robust control of robot manipulators using a decentralized control scheme. The control scheme decouples the coupling dynamics between the joints and compensates the joint variable errors without any computation of the dynamics. The performance of the control scheme is compared with that of other control schemes such as the computed torque scheme and the adaptive control scheme by simulation.

  • PDF

Multivariable control of robot manipulators using fuzzy logic (퍼지논리를 이용한 로봇 매니퓰레이터의 다변수제어)

  • 이현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.490-493
    • /
    • 1996
  • This paper presents a control scheme for the motion of a 2 DOF robot manipulator. Robot manipulators are multivariable nonlinear systems. Fuzzy logic is avaliable human-like control without complex mathematical operation and is suitable to nonlinear system control. In this paper, Implementation of fuzzy logic control of robotic manipulators shows. Algorithm has been performed with simulation packages MATRIXx and SystemBuild.

  • PDF

Optimal-Time Synthesis for the Two Coordinated Robot Manipulators (두 대의 산업용 로보트를 이용한 협력 작업의 최적 시간 제어)

  • 조현찬;전홍태
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1471-1478
    • /
    • 1989
  • The optimal-time control of the coordinated motion of two robot manipulators may be of consequence in the industrial automation. In this paper two robot manipulators garsping a common object are assumed to travel a specified Cartesian path and the method how to derive the optimal-time solution is explained. This approach is based on parameterizing the corresponding patn and utilizing the phase-plame technique in the trajectory planning. Also the torques supplied by the actuators are assumed to have some constant bounds. The effectiveness of this approach is demonstrated by a computer simulation using a PUMA 560 manipulator.

  • PDF

A Robust Fuzzy Logic Control for Robot Manipulators (다관절형 로봇을 위한 강인한 퍼지 논리 제어)

  • 이수영;정명진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.1-9
    • /
    • 1996
  • Although the fuzzy logic controller (FLC) has been adopted in many engineering applications, one hesitates to adopt the FLC in critical applications, since there was no definite control theoretic analysis. In this paper, based on the stability/robustness analysis of an FLC by S.Y.Yi$^{[3]}$, we apply the FLC to robot manipulator with the structured and unstructured uncertainties e.g., load variation and firction, etc. And we verify the performance of the FLC by computer simulation on a simple two-link robot manipulator.

  • PDF

유니사이클 로봇에 대한 인간적 추론 제어 메카니즘

  • 김중완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.359-362
    • /
    • 1996
  • Our unicycle robot has simple mechanical structure. But unicycle's dynamical system is a very sensitive unstable system. Equation of motion of this simple unicycle robot was derived using Lagrange's method. In this paper a human inference control mechanism was established throughout an inquiry into hyman riding a unicycle, and we developed a hybrid controller to control our unicycle robot. Our controller is consisted with the PD and fuzzy controller containing fuzzy gain scheduling technique. Computer simulation shows good results.

  • PDF