• Title/Summary/Keyword: Robot simulation

Search Result 1,696, Processing Time 0.027 seconds

A study of MIMO Fuzzy system with a Learning Ability (학습기능을 갖는 MIMO 퍼지시스템에 관한 연구)

  • Park, Jin-Hyun;Bae, Kang-Yul;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.505-513
    • /
    • 2009
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.

A Study on the Analysis for Development of a Deflector Type Miniature Ball Screw (초소형 디플렉터 타입 볼스크류 개발을 위한 해석에 관한 연구)

  • Lee, Choon-Man;Moon, Sung-Ho;Lee, Young-Hun;Kim, Jun-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.979-984
    • /
    • 2016
  • Recently, ball screws have been used in machine tools, robot parts, and medical instruments. The demand for ball screws of high precision and reduced size is increasing because of the growth of high value-added industries. Three types of ball screws are typically used: deflector type, end-cap type, and tube type. They are also classified from C0 to C9 according to the precision level. A deflector type ball screw can reduce the variation of rotational torque and the size of the nut of the ball screw is minimized. To ensure the reliable design of ball screws, it is important to perform a structural analysis. The purpose of this study is to perform a stability evaluation through analysis of a deflector type miniature ball screw for weapon systems. The analysis is performed through Finite Elements Method (FEM) simulation to predict characteristics such as deformation, stress, and thermal effects. The interference between the shaft and the deflector for smooth rotation are also studied. Based on the results of the analysis, the development of the deflector type miniature ball screw for weapon systems is performed.

A study on Energy Conversion through Torque Control of IPMSM in EV Powertrain (EV 파워트레인에서 IPMSM의 토크 제어를 통한 에너지 변환에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.5
    • /
    • pp.845-850
    • /
    • 2021
  • In this study, the energy conversion characteristics and design of electric vehicle (EV: Electric Vehicle) powertrain were performed. An interior permanent magnet synchronous motor (IPMSM) was targeted as a power source for the EV powertrain, and control was performed. In order to drive the IPMSM, two regions are considered: a constant torque and a constant output (field-weakening) region. The design of the control system for IPMSM was constructed based on the d-q reference frame (vector control). To determine the static characteristics of motor torque appearing in two areas of IPMSM, a torque control system and a d axis current control system of IPMSM were implemented and proposed. Matlab-Simulink software was used for characteristic analysis. Finally, by applying IPMSM to the powertrain model under the actual EV vehicle level conditions, simulation results of the proposed control system were performed and characteristics were analyzed.

Digital Switching Filter Algorithm using Modified Fuzzy Weights and Combined Weights in Mixed Image Noise Environment (복합 영상 잡음 환경에서 변형된 퍼지가중치 및 결합가중치를 사용한 디지털 스위칭 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.645-651
    • /
    • 2021
  • With the advent of the Fourth Industrial Revolution, modern society uses a diverse pool of devices. In this context, there is increasing interest in removing various kinds of noise arising in data transmission. However, it is difficult to restore image that damaged by mixed noise, and a digital filter that effectively restores an image according to the characteristics of the noise is required. In this paper, we propose a digital switching filter algorithm to remove mixed noise generated during digital image transmission. The proposed algorithm switches the filtering process through noise judgment and reconstructs the image using fuzzy weights and combined weights based on the pixel values inside the mask. To evaluate the proposed algorithm, we compared it with existing filter algorithms through simulation. Filtering results were expanded and compared for visual evaluation, and PSNR comparison was used for quantitative evaluation.

Adaptive Weight Filter Algorithm for Restoration Images Corrupted by High Density Impulse Noise (고밀도 임펄스 잡음에 훼손된 영상 복원을 위한 적응형 가중치 필터 알고리즘)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1483-1489
    • /
    • 2022
  • Recently, due to the influence of the 4th industrial revolution and the development of communication media, various digital video equipment are being used in industrial fields. Image data is easily damaged by noise in the process of acquiring and transmitting and receiving from the camera and sensor, and since the damaged image has a great effect on the processing of the system, noise removal is essential. In this paper, a weight filter algorithm using a weight graph is proposed to restoration images damaged by high-density impulse noise. The proposed algorithm obtains a weight graph using pixel values inside the filtering mask of the image, and restores the image by applying the final weight to the filtering mask. Simulation was conducted to analyze the noise removal performance of the proposed algorithm, and the magnified image and PSNR were used to compare with the existing method. The resulting image of the proposed algorithm showed excellent performance by removing high-density impulse noise.

Kinematic and dynamic analysis of a spherical three degree of freedom joint rehabilitation exercise equipment (3자유도 구형관절 재활운동기기의 기구학 및 동역학 해석)

  • Kim, Seon-Pil
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.16-29
    • /
    • 2009
  • This paper investigates the kinematic and dynamic analysis of a spherical three degree of freedom parallel joint module, which is used in the exercise equipment for balance and leg-strength improvement of aged people. The joint module has three dyads which consist of two links and three revolute joints, and their all joints intersect at the global point located at the module's center. The paper shows the explicit mathematical procedure for deriving the closed form solutions in the inverse and forward position analysis of this parallel joint module. In velocity and acceleration analysis, we derived relations for joint velocities and accelerations of dyads and rotational velocity and acceleration of the top plate. For applying this module to rehabilitation exercise, we determined the dynamic model of the Korean males in their 50s and examined the model's results by dynamic model simulation.

A method for automatically generating a route consisting of line segments and arcs for autonomous vehicle driving test (자율이동체의 주행 시험을 위한 선분과 원호로 이루어진 경로 자동 생성 방법)

  • Se-Hyoung Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Path driving tests are necessary for the development of self-driving cars or robots. These tests are being conducted in simulation as well as real environments. In particular, for development using reinforcement learning and deep learning, development through simulators is also being carried out when data of various environments are needed. To this end, it is necessary to utilize not only manually designed paths but also various randomly and automatically designed paths. This test site design can be used for actual construction and manufacturing. In this paper, we introduce a method for randomly generating a driving test path consisting of a combination of arcs and segments. This consists of a method of determining whether there is a collision by obtaining the distance between an arc and a line segment, and an algorithm that deletes part of the path and recreates an appropriate path if it is impossible to continue the path.

Study of Deep Learning Based Specific Person Following Mobility Control for Logistics Transportation (물류 이송을 위한 딥러닝 기반 특정 사람 추종 모빌리티 제어 연구)

  • Yeong Jun Yu;SeongHoon Kang;JuHwan Kim;SeongIn No;GiHyeon Lee;Seung Yong Lee;Chul-hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • In recent years, robots have been utilized in various industries to reduce workload and enhance work efficiency. The following mobility offers users convenience by autonomously tracking specific locations and targets without the need for additional equipment such as forklifts or carts. In this paper, deep learning techniques were employed to recognize individuals and assign each of them a unique identifier to enable the recognition of a specific person even among multiple individuals. To achieve this, the distance and angle between the robot and the targeted individual are transmitted to respective controllers. Furthermore, this study explored the control methodology for mobility that tracks a specific person, utilizing Simultaneous Localization and Mapping (SLAM) and Proportional-Integral-Derivative (PID) control techniques. In the PID control method, a genetic algorithm is employed to extract the optimal gain value, subsequently evaluating PID performance through simulation. The SLAM method involves generating a map by synchronizing data from a 2D LiDAR and a depth camera using Real-Time Appearance-Based Mapping (RTAB-MAP). Experiments are conducted to compare and analyze the performance of the two control methods, visualizing the paths of both the human and the following mobility.

Development of Small-sized Model of Ray-type Underwater Glider and Performance Test (Ray형 수중글라이더 소형 축소모델 개발 및 성능시험)

  • Choi, Hyeung-sik;Lee, Sung-wook;Kang, Hyeon-seok;Duc, Nguyen Ngoc;Kim, Seo-kang;Jeong, Seong-hoon;Chu, Peter C.;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.537-543
    • /
    • 2017
  • Underwater glider is the long-term operating underwater robot that was developed with a purpose of continuous oceanographic observations and explorations. Torpedo-type underwater glider is not efficient from an aspect of maneuverability, because it uses a single buoyancy engine and motion controller for obtaining propulsive forces and moments. This paper introduces a ray-type underwater glider(RUG) with dual buoyancy engine, which improves the control performance of buoyancy and motion compared with torpedo-type underwater glider. Carrying out Computational Fluid Dynamics (CFD) analysis as static pitch drift test, the performance of fluid resistance for gliding motion was identified. Based on the calculated hydrodynamic coefficients, the dynamic simulation compared and analyzed the motion performance of torpedo-type and ray-type while controlling same volume of buoyancy engine. Small-sized model of RUG was developed to perform fundamental performance tests.

Spherical-Coordinate-Based Guiding System for Automatic 3D Shape Scanning (3D 형상정보 자동 수집을 위한 구면좌표계식 스캐닝 시스템)

  • Park, Sang Wook;Maeng, Hee-Young;Lee, Myoung Sang;Kwon, Kil Sun;Na, Mi-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1029-1036
    • /
    • 2014
  • Several types of automatic 3D scanners are available for use in the 3D scanning industry, e.g., an automatic 3D scanner that uses a robot arm and one that uses an automatic rotary table. Specifically, these scanners are used to obtain a 3D shape using automatic assisting devices. Most of these scanners are required to perform numerous operations, such as merging, aligning, trimming, and filling holes. We are interested in developing an automatic 3D shape collection device using a spherical-coordinate-based guiding system. Then, the aim of the present study is to design an automatic guiding system that can automatically collect 3D shape data. We develop a 3D model of this system and measuring data which are collected by a personal computer. An optimal design of this system and the geometrical accuracy of the measured data are both evaluated using 3D modeling software. The developed system is then applied to an object having a highly complex shape and manifold sections. Our simulation results demonstrate that the developed system collects higher-quality 3D data than the conventional method.