• Title/Summary/Keyword: Robot manipulators

Search Result 499, Processing Time 0.027 seconds

A study on robot manipulator control by hand variables (핸드변수에 의한 로보트 매니퓰레이터 제어에 관한 연구)

  • 정광손;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.58-62
    • /
    • 1987
  • In this paper, path planning, modelling, and control of manipulators are described. The path planning deals with specifying how to define the motion of hand along straight line paths in the minimum amount of time. A new model was developed for the manipulator, which is based on the classical equations of motion of a rigid body. A new control algorithm was developed which controls the manipulator in terms of the position and orientation of the hand.

  • PDF

An Optimal Control Approach to Robust Control of Robot Manipulators (로봇 매니퓰레이터의 강인제어를 위한 최적제어로의 접근)

  • 김미경;강희준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.176-182
    • /
    • 2003
  • An optimal control approach to robust control design is proposed in this study for rigid robotic systems under the unknown load and the other uncertainties. The uncertainties are quadratically bounded for some positive definite matrix. Iterative method to find the matrix is shown. Simulations are made for a weight-lifting operation of a two-link manipulator and the robust control performance of robotic systems by the proposed algorithm is remarkable.

Input shaping filtering methods for the control of structurally flexible long-reach manipulators (구조적으로 유연하고 긴 로봇 매니퓰레이터의 제어를 위한 입력 Shaping 필터링 방법)

  • 황동환;권동수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.123-130
    • /
    • 1996
  • Due to high payload capacity and high length-to -cross-section ratio requirements, long-reach manipulator systems are expected to exhibit significant structural flexibility. To avoid structural vibrations during operations, various types of input shaping filtering methods have been investigated. A robust notch filtering method and an impulse shaping filtering method were investigated and implemented. In addition, two very different approaches have been developed and compared. One new approach, referred to as a

  • PDF

The Efficient Dynamic Modeling of a Manipulator Robot System (제조 공정용 로봇 매니퓰레이터의 효율적 다물체 동역학 해석 모델링 기술 개발)

  • Song, In-Ho;Ryu, Han-Sik;Choi, Jin-Hwan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.155-164
    • /
    • 2015
  • Recently, the robot manipulators are needed more slim size and longer reach and more accurate movement for increasing productivity. So, in this paper, the simulation modeling method and the efficient modeling method for new slim & long reach robot has been investigated for forecasting the slim robot performance before making prototype. To do this investigation, the major parts of robot driving system such as motor, belt and reducer devices and parts assembly method have been investigated mainly. And then, using this developed modeling method the new designed robot will be forecasted about the dynamic performance of new designed robot.

Design of Robot Arm for Service Using Deep Learning and Sensors (딥러닝과 센서를 이용한 서비스용 로봇 팔의 설계)

  • Pak, Myeong Suk;Kim, Kyu Tae;Koo, Mo Se;Ko, Young Jun;Kim, Sang Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.221-228
    • /
    • 2022
  • With the application of artificial intelligence technology, robots can provide efficient services in real life. Unlike industrial manipulators that do simple repetitive work, this study presented design methods of 6 degree of freedom robot arm and intelligent object search and movement methods for use alone or in collaboration with no place restrictions in the service robot field and verified performance. Using a depth camera and deep learning in the ROS environment of the embedded board included in the robot arm, the robot arm detects objects and moves to the object area through inverse kinematics analysis. In addition, when contacting an object, it was possible to accurately hold and move the object through the analysis of the force sensor value. To verify the performance of the manufactured robot arm, experiments were conducted on accurate positioning of objects through deep learning and image processing, motor control, and object separation, and finally robot arm was tested to separate various cups commonly used in cafes to check whether they actually operate.

Dynamic tracking control of robot manipulators using vision system (비전 시스템을 이용한 로봇 머니퓰레이터의 동력학 추적 제어)

  • 한웅기;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1816-1819
    • /
    • 1997
  • Using the vision system, robotic tasks in unstructured environments can be accompished, which reduces greatly the cost and steup time for the robotic system to fit to he well-defined and structured working environments. This paper proposes a dynamic control scheme for robot manipulator with eye-in-hand camera configuration. To perfom the tasks defined in the image plane, the camera motion Jacobian (image Jacobian) matrix is used to transform the camera motion to the objection position change. In addition, the dynamic learning controller is designed to improve the tracking performance of robotic system. the proposed control scheme is implemented for tasks of tracking moving objects and shown to outperform the conventional visual servo system in convergence and robustness to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Redundancy Resolution by Minimization of Joint Disturbance Torque for Independent Joint Controlled Kinematically Redundant Manipulators

  • Park, Myoung-Hwan
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.56-61
    • /
    • 2000
  • Majority of industrial robots are controlled by a simple independent joint control of joint actuators rather than complex controllers based on the nonlinear dynamic model of the robot manipulator. In this independent joint control scheme, the performance of actuator control is influenced significantly by the joint disturbance torques including gravity, Coriolis and centrifugal torques, which result in the trajectory tracking error in the joint control system. The control performance of a redundant manipulator under independent joint control can be improved by minimizing this joint disturbance torque in resolving the kinematic redundancy. A 3 DOF planar robot is studied as an example, and the dynamic programming method is used to find the globally optimal joint trajectory that minimize the joint disturbance torque over the entire motion. The resulting solution is compared with the solution obtained by the conventional joint torque minimization, and it is shown that joint disturbance can be reduced using the kinematic redundancy.

  • PDF

Analysis of Weightlifting Motion Based on Robotic Manipulability (로봇 조작도에 기반한 역도 들기 자세 해석)

  • Won, Kyoung-Tae;Lee, Ji-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.4
    • /
    • pp.446-453
    • /
    • 1999
  • An athlete motion during weightlifting is analyzed based on robotic manipulability, which shows dexterities by changing the position and orientation of the end-effector of robot manipulators arbitrary or along a specified direction. The athlete body is modeled as a highly redundant robot manipulator. The motion of weightlifting is analyzed based on the selected model with a power manipulability. Power manipulability and its geometric characteristics are derived by combining kinematic manipulability and dynamic manipulability. Also, manipulability-based optimal trajectory of weightlifter for given body structure of weightlifter derived through genetic algorithm.

  • PDF

Motion Analysis of Objects Carried by Multiple Cooperating Manipulators with Frictional Contacts

  • Lee, Ji-Hong;Lee, Won-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1424-1429
    • /
    • 2004
  • In this paper a mathematical framework for deriving acceleration bounds from given joint torque limits of multiple cooperating robots are described. Especially when the different frictional contacts for every contact are assumed and the torque limits are given in 2-norm sense, we show that the resultant geometrical configuration for the acceleration is composed of corresponding parts of ellipsoids. Since the frictional forces at the contacts are proportional to the normal squeezing forces, the key points of the work includes how to determine internal forces exerted by each robot in order not to cause slip at the contacts while the object is carried by external forces. A set of examples composed of two robot systems are shown with point-contact-with-friction model and insufficient or proper degree of freedom robots.

  • PDF

A Full Order Sliding Mode Tracking Controller For A Class of Uncertain Dynamical System

  • Ahmad, M.N.;Nawawi, S.W.;Osman, J.H.S
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1853-1858
    • /
    • 2004
  • This paper presents the development of a full order sliding mode controller for tracking problem of a class of uncertain dynamical system, in particular, the direct drive robot manipulators. By treating the arm as an uncertain system represented by its nominal and bounded parametric uncertainties, a new robust fullorder sliding mode tracking controller is derived such that the actual trajectory tracks the desired trajectory as closely as possible despite the non-linearities and input couplings present in the system. A proportional-integral sliding surface is chosen to ensure the stability of overall dynamics during the entire period i.e. the reaching phase and the sliding phase. Application to a three DOF direct drive robot manipulator is considered.

  • PDF