• 제목/요약/키워드: Robot manipulators

검색결과 499건 처리시간 0.022초

신경 회로망을 이용한 로봇의 상대 오차 보상 (Relative Error Compensation of Robot Using Neural Network)

  • 김연훈;정재원;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.66-72
    • /
    • 1999
  • Robot calibration is very important to improve the accuracy of robot manipulators. However, the calibration procedure is very time consuming and laborious work for users. In this paper, we propose a method of relative error compensation to make the calibration procedure easier. The method is completed by a Pi-Sigma network architecture which has sufficient capability to approximate the relative relationship between the accuracy compensations and robot configurations while maintaining an efficient network learning ability. By experiment of 4-DOF SCARA robot, KIRO-3, it is shown that both the error of joint angles and the positioning error of end effector are drop to 15$\%$. These results are similar to those of other calibration methods, but the number of measurement is remarkably decreased by the suggested compensation method.

  • PDF

자기동조 적응제어기법에 의한 로봇 매니퓰레이터의 강인제어 (Robust Control of Robot Manipulator using Self-Tuning Adaptive Control)

  • 뱃길호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 추계학술대회 논문
    • /
    • pp.150-155
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using digital signal processors for robot manipulators. TMS3200C50 is used in implementing real-time adaptive control algorithms provide advanced performance for robot manipulator. In this paper an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm and controller parameters are detemined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

로못 머니퓰레이터를 위한 적응학습제어 알고리즘의 구현 (Implementation of an adaptive learning control algorithm for robot manipulators)

  • 이형기;최한호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.632-637
    • /
    • 1992
  • Recently many dynamics control algorithms using robot dynamic equation have been proposed. One of them, Kawato's feedback error learning scheme requires neither an accurate model nor parameter estimation and makes the robot motion closer to the desired trajectory by repeating operation. In this paper, the feedback error learning algorithm is implemented to control a robot system, 5 DOF revolute type movemaster. For this purpose, an actuator dynamic model is constructed considering equivalent robot dynamics model with respect to actuator as well as friction model. The command input acquired from the actuator dynamic model is the sum of products of unknown parameters and known functions. To compute the control algorithm, a parallel processing computer, transputer, is used and real-time computing is achieved. The experiment is done for the three major link of movemaster and its result is presented.

  • PDF

반복 학습 알고리즘을 이용한 산업용 로봇의 제어 (Iterative Learning Control for Industrial Robot Manipulators)

  • 하태준;연제성;박종현;손승우;이상훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.745-750
    • /
    • 2008
  • Uncertain dynamic parameters and joint flexibility have been problem to control robot manipulator precisely. Hence, even if the controller tracks the desired trajectory well with the feedback of the motor encoders, it is hard to achieve the desired behavior at the end-effector. In this paper, robot trajectory is taught by a general heuristic iterative learning control (ILC) algorithm in order to reduce tracking error of the tool center point (TCP) and the results of tracking with 6 DOF industrial robot manipulator are presented. The performance is verified based on ISO 9283.

  • PDF

TMS320C5X칩을 사용한 스카라 로봇의 극점 배치 자기동조 적응제어기의 실현 (Implementation of a Pole-Placement Self-Tuning Adaptive Controller for SCARA Robot Using TMS320C5X Chip)

  • 배길호;한성현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.754-758
    • /
    • 1996
  • This paper presents a new approach to the design of self-tuning adaptive control system that is robust to the changing dynamic configuration as well as to the load variation factors using Digital signal processors for robot manipulators. TMS320C50 is used in implementing real-time adaptive control algorithms to provide advanced performance for robot manipulator, In this paper, an adaptive control scheme is proposed in order to design the pole-placement self-tuning controller which can reject the offset due to any load disturbance without a detailed description of robot dynamics. Parameters of discrete-time difference model are estimated by the recursive least-square identification algorithm, and controller parameters we determined by the pole-placement method. Performance of self-tuning adaptive controller is illusrated by the simulation and experiment for a SCARA robot.

  • PDF

구난 로봇용 양팔 머니퓰레이터 진동 해석 및 설계 (Analysis and Design of the Dual Arm Manipulator for Rescue Robot)

  • 박동일;박찬훈;김두형;경진호
    • 로봇학회논문지
    • /
    • 제11권4호
    • /
    • pp.235-241
    • /
    • 2016
  • Dual arm manipulators have been developed for the entertainment purpose such as humanoid type or the industrial application such as automatic assembly. Nowadays, there are some issues for applying the dual arm robot system into the various fields. Especially, robots can substitute human and perform the dangerous activity such as search and rescue in the battle field or disaster. In the paper, the dual arm manipulator which can be adapted to the rescue robot with the mobile platform was developed. The kinematic design was proposed for the rescue activity and the required specification was determined through the kinematic analysis and the dynamic analysis in the various conditions. The proposed dual arm manipulator was manufactured based on the vibration analysis result and its performance was proved by the experiment.

The motion editor and high precision integration for optimal control of robot manipulators in dynamic structural systems

  • Chen, Chen-Yuan;Wang, Ling-Huei
    • Structural Engineering and Mechanics
    • /
    • 제41권5호
    • /
    • pp.633-644
    • /
    • 2012
  • The paper presents the motion editor for the robotic movement in the study. The Motion Editor can edit all motions which we want to need. This method is easy when the beginners edit to motions of robots. And let them have interesting in robot control. This paper proposes two methods to edit movements. First, we edit the robot's movement in VB environment, and then we use the Motion Editor to make it. Finally, we compared merit and defect with two methods. Indeed, it is convenient when we use the Motion Editor.

로보트의 시변 장애물 회피를 위한 수학적 접근 방법 (A Mathematical Approach to Time-Varying Obstacle Avoidance of Robot manipulators)

  • 고낙용;이범희;고명삼
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.809-822
    • /
    • 1992
  • A mathematical approach to solving the time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in robot joint space(JS). View-time concept is used to deal with time-varying obstacles. The view-time is the period in which a time-varying obstacles. The view-time is the period in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is the volume swept by the time-varying obstacle for the view-time. The swept volume is transformed into the JS obstacle that is the set of JS robot configurations causing the collision between the robot and the swept volume. In JS, the path avoiding the JS obstacle is planned, and a trajectory satisfying the constraints on robot motion planning is planned along the path. This method is applied to the collision-free motion planning of two SCARA robots, and the simulation results are given.

Offset Wrist를 갖는 6자유도 협동로봇의 역기구학 해석 (Inverse Kinematic Analysis of a 6-DOF Collaborative Robot with Offset Wrist)

  • 김기성;김한성
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.953-959
    • /
    • 2021
  • In this paper, the numerical inverse kinematics analysis is presented for a collaborative robot with an offset wrist. Robot manipulators with offset wrist are widely used in industrial applications, due to many advantages over those with wrist center and those with three parallel axes such as simple mechanical design, light weight, and so on. There may not exist a closed-form solution for a robot manipulator with offset wrist. A simple numerical method is applied to solve the inverse kinematics with offset wrist. Singularity is analyzed using Jacobian matrix and the numerical inverse kinematics algorithm is implemented on the real-time controller.

AMN을 이용한 반복학습 제어기의 성능개선 (Performance improvement of repetitive learning controller using AMN)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1573-1576
    • /
    • 1997
  • In this paper we present an associative menory network(AMN) controller for learning of robot trajectories. We use AMN controller in order to improve the performance of conventional learning control, e.g. RCL, which had studied by Sadegh et al. Computer simulations show the feasibility and effectiveness of the proposed AMN controller.

  • PDF