• 제목/요약/키워드: Robot localization

검색결과 587건 처리시간 0.02초

Human-Robot Interaction in Real Environments by Audio-Visual Integration

  • Kim, Hyun-Don;Choi, Jong-Suk;Kim, Mun-Sang
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권1호
    • /
    • pp.61-69
    • /
    • 2007
  • In this paper, we developed not only a reliable sound localization system including a VAD(Voice Activity Detection) component using three microphones but also a face tracking system using a vision camera. Moreover, we proposed a way to integrate three systems in the human-robot interaction to compensate errors in the localization of a speaker and to reject unnecessary speech or noise signals entering from undesired directions effectively. For the purpose of verifying our system's performances, we installed the proposed audio-visual system in a prototype robot, called IROBAA(Intelligent ROBot for Active Audition), and demonstrated how to integrate the audio-visual system.

주행 로봇 움직임 추정용 스테레오 적외선 조명 기반 Visibility 센서 (Visibility Sensor with Stereo Infrared Light Sources for Mobile Robot Motion Estimation)

  • 이민영;이수용
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.108-115
    • /
    • 2011
  • This paper describes a new sensor system for mobile robot motion estimation using stereo infrared light sources and a camera. Visibility is being applied to robotic obstacle avoidance path planning and localization. Using simple visibility computation, the environment is partitioned into many visibility sectors. Based on the recognized edges, the sector a robot belongs to is identified and this greatly reduces the search area for localization. Geometric modeling of the vision system enables the estimation of the characteristic pixel position with respect to the robot movement. Finite difference analysis is used for incremental movement and the error sources are investigated. With two characteristic points in the image such as vertices, the robot position and orientation are successfully estimated.

넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산 (Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area)

  • 진홍신;왕실;한후석;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

센서 융합기반의 추측항법을 통한 야지 주행 이동로봇의 위치 추정 및 제어 (Localization and Control of an Outdoor Mobile Robot Based on an Estimator with Sensor Fusion)

  • 전상운;정슬
    • 대한임베디드공학회논문지
    • /
    • 제4권2호
    • /
    • pp.69-78
    • /
    • 2009
  • Localization is a very important technique for the mobile robot to navigate in outdoor environment. In this paper, the development of the sensor fusion algorithm for controlling mobile robots in outdoor environments is presented. The multi-sensorial dead-reckoning subsystem is established based on the optimal filtering by first fusing a heading angle reading data from a magnetic compass, a rate-gyro, and two encoders mounted on the robot wheels, thereby computing the dead-reckoned location. These data and the position data provided by a global sensing system are fused together by means of an extended Kalman filter. The proposed algorithm is proved by simulation studies of controlling a mobile robot controlled by a backstepping controller and a cascaded controller. Performances of each controller are compared.

  • PDF

DGPS를 이용한 시각장애인 유도로봇의 Localization 시스템 (Localization System of guide-robot for Visually Impaired using DGPS)

  • 박승우;신동범;이응혁;한진수;홍승홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 합동 추계학술대회 논문집 정보 및 제어부문
    • /
    • pp.501-504
    • /
    • 2002
  • This research embodied DGPS (Differential GPS) system that robot detects users present position in outside environment as part of Lacteal gland robot that is sight obstacle. Therefore, introduced GPS system that is effective means that can save essential world coordinate to realize global navigation. However, it is no the effectiveness to use GPS that is having error of tens meter to apply to lacteal gland robot that is sight obstacle without revision. Therefore, this research embodied Localization system of lacteal gland robot that is sight obstacle using DGPS that make use of FM DARC system to use DGPS to heighten navigation accuracy of this.

  • PDF

Mobile Robot Localization using Range Sensors: Consecutive Scanning and Cooperative Scanning

  • Lee Sooyong;Song Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권1호
    • /
    • pp.1-14
    • /
    • 2005
  • This paper presents an obstacle detection algorithm based on the consecutive and the cooperative range sensor scanning schemes. For a known environment, a mobile robot scans the surroundings using a range sensor that can rotate 3600°. The environment is rebuilt using nodes of two adjacent walls. The robot configuration is then estimated and an obstacle is detected by comparing characteristic points of the sensor readings. In order to extract edges from noisy and inaccurate sensor readings, a filtering algorithm is developed. For multiple robot localization, a cooperative scanning method with sensor range limit is developed. Both are verified with simulation and experiments.

RFID 응용 기술을 이용한 이동 로봇의 실내 위치 추정 (Indoor Localization Scheme of a Mobile Robot Applying REID Technology)

  • 김성부;이동희;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제11권12호
    • /
    • pp.996-1001
    • /
    • 2005
  • Recently, with the development of service robots and with the new concept of ubiquitous world, the position estimation of mobile objects has been raised to an important problem. As pre-liminary research results, some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed in this paper. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter: 1. The RFID receiver gets the synchronization signal from the mobile robot and 2. The ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from. Three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can get the ultrasonic signals from only one or two beacons, because of the obstacles located along the moving path. Therefore, in this paper, as one of our dedicated contribution, the position estimation scheme with less than three sensors has been developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

무선 센서 네트워크에서 이동성 로봇을 이용한 센서 위치 인식 기법에 관한 연구 (A Localization Scheme Using Mobile Robot in Wireless Sensor Networks)

  • 김우현
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.105-113
    • /
    • 2007
  • Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of application. Sensor position is used for its data to be meaningful and for energy efficient data routing algorithm especially geographic routing. The previous works for sensor localization utilize global positioning system(GPS) or estimate unknown-location nodes position with help of some small reference nodes which know their position previously. However, the traditional localization techniques are not well suited in the senor network for the cost of sensors is too high. In this paper, we propose the sensor localization method with a mobile robot, which knows its position, moves through the sensing field along pre-scheduled path and gives position information to the unknown-location nodes through wireless channel to estimate their position. We suggest using the sensor position estimation method and an efficient mobility path model. To validate our method, we carried out a computer simulation, and observed that our technique achieved sensor localization more accurately and efficiently than the conventional one.

  • PDF

수중로봇 위치추정을 위한 베이시안 필터 방법의 실현과 거리 측정 특성 분석 (Implementation of Bayesian Filter Method and Range Measurement Analysis for Underwater Robot Localization)

  • 노성우;고낙용;김태균
    • 로봇학회논문지
    • /
    • 제9권1호
    • /
    • pp.28-38
    • /
    • 2014
  • This paper verifies the performance of Extended Kalman Filter(EKF) and MCL(Monte Carlo Localization) approach to localization of an underwater vehicle through experiments. Especially, the experiments use acoustic range sensor whose measurement accuracy and uncertainty is not yet proved. Along with localization, the experiment also discloses the uncertainty features of the range measurement such as bias and variance. The proposed localization method rejects outlier range data and the experiment shows that outlier rejection improves localization performance. It is as expected that the proposed method doesn't yield as precise location as those methods which use high priced DVL(Doppler Velocity Log), IMU(Inertial Measurement Unit), and high accuracy range sensors. However, it is noticeable that the proposed method can achieve the accuracy which is affordable for correction of accumulated dead reckoning error, even though it uses only range data of low reliability and accuracy.

이족 보행 로봇의 보행 안정화 및 RFID를 이용한 경로 추종에 관한 연구 (A Study on Walking Stabilization and Path Tracking of Biped Robot Using RFID)

  • 박종한;김용태
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.51-56
    • /
    • 2013
  • 이족 보행 로봇을 실생활에 적용하기 위해서는 다양한 환경에서의 강인한 보행 뿐만 아니라, 현재 위치를 인식하여 목표 위치로의 경로를 생성하고, 경로를 추종하는 기능이 요구된다. 최근에 많이 사용되고 있는 RFID는 이동 로봇의 위치인식 및 경로 생성에 손쉽게 활용이 가능하다. 그러나 이족 로봇은 보행시에 불안정성을 내포하고 있어 주어진 경로에서 벗어나기 쉽다. 본 논문에서는 FSR(Force Sensing Resistor)센서, 자이로와 가속도 센서를 이용하여 이족 보행 로봇의 보행 안정화 방법을 제안하였다. 또한 양발에 RFID 센서를 장착하여 이족 보행 로봇의 위치 인식 후 경로를 추종하는 알고리즘을 제안하였다. 제안된 보행 안정화 알고리즘은 실제 제작된 이족 보행 로봇을 이용하여 비평탄 지형에서 실험하여 검증하였으며, 경로 추종 실험은 RFID센서를 로봇의 발바닥에 장착하여 평탄 지형에서 보행실험을 통해 검증하였다.