• Title/Summary/Keyword: Robot guide

Search Result 186, Processing Time 0.046 seconds

Considerable Factors According to Classification of Social Robot Services (소셜 로봇 서비스의 유형화에 따른 유형별 고려 요소)

  • Lee, Ki-Lim;Jeong, Min-Ji;Choi, Seungyeon;Park, Jae Wan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.8
    • /
    • pp.883-892
    • /
    • 2018
  • Recently, as interest in social robots to support physical convenience and emotional sympathy has increased, and social internet has developed, a social robot has evolved as various services simply beyond robot function. Therefore, to develop a social robot service effectively, it is required to study the functional application and methods of interaction between user and social robot service. The purpose of this study is to classify social robot services and to suggest the types of elements that need to be considered in service development. To do this, we conducted in-depth case studies and analysis based on the theoretical definitions and characteristics of social robots. Then, based on the sympathy and functions, we classified social robot services into 1) emotional support type, 2) companion type, 3) guide type, and 4) life support type. In addition, in this study, we derive the considerable factors according to the classified types for the development of effective social robot services. This study will contribute to the understanding and development of various services using a social robot.

Predictive Control of an Efficient Human Following Robot Using Kinect Sensor (Kinect 센서를 이용한 효율적인 사람 추종 로봇의 예측 제어)

  • Heo, Shin-Nyeong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.957-963
    • /
    • 2014
  • This paper proposes a predictive control for an efficient human following robot using Kinect sensor. Especially, this research is focused on detecting of foot-end-point and foot-vector instead of human body which can be occluded easily by the obstacles. Recognition of the foot-end-point by the Kinect sensor is reliable since the two feet images can be utilized, which increases the detection possibility of the human motion. Depth image features and a decision tree have been utilized to estimate the foot end-point precisely. A tracking point average algorithm is also adopted in this research to estimate the location of foot accurately. Using the continuous locations of foot, the human motion trajectory is estimated to guide the mobile robot along a smooth path to the human. It is verified through the experiments that detecting foot-end-point is more reliable and efficient than detecting the human body. Finally, the tracking performance of the mobile robot is demonstrated with a human motion along an 'L' shape course.

Experiments of soccer robots system

  • Sugisaka, Masanori;Nakanishi, Kiyokazu;Hara, Masayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1105-1108
    • /
    • 2003
  • The micro robot soccer playing system is introduced. Studying and learning, evolving in artificial agents are very difficult problem, but on the other hand we think more powerfully challenging task. In our laboratory, this soccer-system studies mainly centered on single agent learning problem. The construction of such experimental system has involved lots of kinds of challenges such as robot designing, vision processing, motion controlling. At last we will give some results showing that the proposed approach is feasible to guide the design of common agents system.

  • PDF

Fuzzy-based Path Planning for Multiple Mobile Robots in Unknown Dynamic Environment

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.918-925
    • /
    • 2017
  • This paper presents a path planning problem for multi-robot system in the environment with dynamic obstacles. In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly, a navigation method based on fuzzy logic controllers has been developed by using proximity sensors. There are two kinds of fuzzy controllers developed in this work, one is used for obstacle avoidance and the other is used for orientation to the target. Both static and dynamic obstacles are included in the environment and the dynamic obstacles are defined with no type of restriction of direction and velocity. Here, the environment is unknown for all the robots and the robots should detect the surrounding information only by the sensors installed on their bodies. The simulation results show that the proposed method has a positive effectiveness for the path planning problem.

A Study on Development of Visual Navigation System based on Neural Network Learning

  • Shin, Suk-Young;Lee, Jang-Hee;You, Yang-Jun;Kang, Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • It has been integrated into several navigation systems. This paper shows that system recognizes difficult indoor roads without any specific marks such as painted guide line or tape. In this method the robot navigates with visual sensors, which uses visual information to navigate itself along the read. The Neural Network System was used to learn driving pattern and decide where to move. In this paper, I will present a vision-based process for AMR(Autonomous Mobile Robot) that is able to navigate on the indoor read with simple computation. We used a single USB-type web camera to construct smaller and cheaper navigation system instead of expensive CCD camera.

Development of an Integrated Reactor UT Inspection System

  • Park, Yoo-Rark;Lee, Jae-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.133.6-133
    • /
    • 2001
  • Reactor vessel is one of the most important equipment of Nuclear Power Plant (NPP) with regard to the nuclear safety. Thus reactor vessel must be examined periodically by certified experts. Currently, ultra-sonic(UT) non-destructive inspection is executed on reactor vessel. Two different techniques are used in this inspection. One is using the movable manipulator fixed with the support-guide placed on the vessel, and the other is using mobile robot moving in the vessel. Movable manipulator machine is very heavy, hard to handle, and very expensive. Mobile robot equipment is small and convenient but has a weak point on positional precision. To solve these problems we developed a reactor inspection system based on laser-driven mobile robot. This paper describes the main concept and structure of integrated inspection units and the feature of implemented units.

  • PDF

A Study on Seam Tracking for Fillet Welding using High Speed Rotating Arc Sensor (고속회전 아크센서를 이용한 필렛 용접선 추적에 관한 연구)

  • Lee, Won-Ki;Lee, Gun-You;Oh, Myung-Seok;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.917-922
    • /
    • 2003
  • In this paper, a high speed rotating arc sensor for automatic fillet welding is introduced. In order to track the welding seam, The high speed rotating arc sensor is used. The welding tip of a high speed rotating arc sensor rotates about 3000 rpm using DC motor. The rotating torch is driven by gear between welding torch body and wire guide. The welding current is measured by using the current sensor and rot at ing position sensor. To realize the welding seam tracking algorithm with accuracy, a software filter algorithm using the moving average method is applied to the measured welding current in the microprocessor. The welding mobile robot with two wheels and two sliders is developed for fillet welding. The welding mobile robot can control its traveling direction and turn itself around the corner. The effectiveness is proven through the experimental results conducted with varied fillet tracking patterns.

  • PDF

Collision Avoidance of Obstacles and Path Planning of the Robot applied Genetic Algorithm (유전알고리즘을 적용한 로봇의 장애물 충돌회피 및 경로추정)

  • Lim, Jin-Su;Kim, Moon-Su;Lee, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3042-3044
    • /
    • 1999
  • This paper presents a method for solving the path planning problem for robot manipulators. The technique allows manipulators to move from a specified starting point to a goal without colliding with objects in two dimensional environment. Approximate cell decomposition with a greedy depth-first search algorithm is used to guide the end effector though Cartesian space and genetic algorithms are used to solve the joint variable for the robot manipulators.

  • PDF