• 제목/요약/키워드: Robot calibration

검색결과 208건 처리시간 0.022초

3D 비접촉 인식을 이용한 냉연코일 테이프부착 로봇 개발 (Development of Smart Tape Attachment Robot in the Cold Rolled Coil with 3D Non-Contact Recognition)

  • 신찬배;김진대
    • 제어로봇시스템학회논문지
    • /
    • 제15권11호
    • /
    • pp.1122-1129
    • /
    • 2009
  • Recently taping robot with smart recognition function have been studied in the coil manufacturing field. Due to the difficulty of 3D surface processing from the complicated working environment, it is not easy to accomplish smart tape attachment motion with non-contact sensor. To solve these problems the applicable surface recognition algorithm and a flexible sensing device has been recommended. In this research, the fusion method between 1D displacement and 3D laser scanner is applied for robust tape attachment about cold rolled coil. With these sensors we develop a two-step exploration and the smart algorithm for the awareness of non-aligned coil's information. In the proposed robot system for tape attachment, the problem is reduced to coil's radius searching with laser displacement sensor at first, and then position and orientation detection with 3D laser scanner. To get the movement at the robot's base frame, the hand-eye compensation between robot's end effector and sensing device should be also carried out respectively. In this paper, we examine the auto-coordinate transformation method in the calibration step for the real environment usage. From the experimental results, it was shown that the taping motion of robot had a robust under the non-aligned cold rolled coil.

An Automatic Teaching Method by Vision Information for A Robotic Assembly System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kim, Jong-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.65-68
    • /
    • 1999
  • In this study, an off-line automatic teaching method using vision information for robotic assembly task is proposed. Many of industrial robots are still taught and programmed by a teaching pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and played back repetitively to perform the robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and transferred to the robot controller. This teaching process is implemented through an off-line programming(OLP) software. The OLP is developed for the robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on the assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line automatic teaching.

  • PDF

실시간 환경에서의 영상조정 및 패치 변경에 의한 축구로봇의 성능개선 (Performance Improvement of Soccer Robot by Vision Calibration and Patch Change in Real Time Environment)

  • 최정원;김덕현
    • 조명전기설비학회논문지
    • /
    • 제23권1호
    • /
    • pp.156-161
    • /
    • 2009
  • 본 논문에서는 카메라 렌즈에서 흔히 발생할 수 있는 렌즈의 왜곡에 의한 화상을 보정하고, 로봇 좌표를 인식하기 위해 사용하는 패치의 변경에 의한 로봇의 위치 및 각도오차를 줄여 축구로봇 시스템의 성능 개선에 대한 새로운 방법을 제시한다. 그리고 렌즈의 왜곡 중 기하학적인 왜곡을 보정하여 로봇의 위치오차를 줄여 실시간 환경인 축구로봇 시스템에 적용한다. 로봇의 인식과 로봇의 좌표 및 방향을 판별하기 위하여 사용하는 패치는 그 모양에 따라 로봇이 가지게 되는 위치오차와 각도오차가 발생하게 된다. 본 논문에서는 개선한 로봇패치에 따른 로봇의 위치 및 각도 오차를 줄이는 방법을 제안하고 실험을 통하여 이를 검증하였다.

로봇의 시각시스템을 위한 물체의 거리 및 크기측정 알고리즘 개발 (Development of a Robot's Visual System for Measuring Distance and Width of Object Algorism)

  • 김회인;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제17권2호
    • /
    • pp.88-92
    • /
    • 2011
  • This paper looks at the development of the visual system of robots, and the development of image processing algorism to measure the size of an object and the distance from robot to an object for the visual system. Robots usually get the visual systems with a camera for measuring the size of an object and the distance to an object. The visual systems are accurately impossible the size and distance in case of that the locations of the systems is changed and the objects are not on the ground. Thus, in this paper, we developed robot's visual system to measure the size of an object and the distance to an object using two cameras and two-degree robot mechanism. And, we developed the image processing algorism to measure the size of an object and the distance from robot to an object for the visual system, and finally, carried out the characteristics test of the developed visual system. As a result, it is thought that the developed system could accurately measure the size of an object and the distance to an object.

카메라-레이저스캐너 상호보완 추적기를 이용한 이동 로봇의 사람 추종 (Person-following of a Mobile Robot using a Complementary Tracker with a Camera-laser Scanner)

  • 김형래;최학남;이재홍;이승준;김학일
    • 제어로봇시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.78-86
    • /
    • 2014
  • This paper proposes a method of tracking an object for a person-following mobile robot by combining a monocular camera and a laser scanner, where each sensor can supplement the weaknesses of the other sensor. For human-robot interaction, a mobile robot needs to maintain a distance between a moving person and itself. Maintaining distance consists of two parts: object tracking and person-following. Object tracking consists of particle filtering and online learning using shape features which are extracted from an image. A monocular camera easily fails to track a person due to a narrow field-of-view and influence of illumination changes, and has therefore been used together with a laser scanner. After constructing the geometric relation between the differently oriented sensors, the proposed method demonstrates its robustness in tracking and following a person with a success rate of 94.7% in indoor environments with varying lighting conditions and even when a moving object is located between the robot and the person.

로봇자세 측정용 와이어 병렬메카니즘의 기구학적 해석 (Kinematic analysis of the wire parallel mechanism for robot pose measurement)

  • 정재원;김수현;곽윤근
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.2146-2155
    • /
    • 1997
  • This paper presents the Wire Parallel Mechanism for robot pose measurement which can be used to robot calibration. It is constructed with six parallel links using wire. The position and orientation of the end effector of a robot are calculated from the wire length that measured by the encoder. The unique solution is obtained from a Newton-Raphson method and geometric configuration of the mechanism, also the method to estimate a measuring space is presented. Through the simulations, it is verified that the proposed mechanism can measure a robot pose, and has a large measuring space. In conclusion, it can be used effectively in a robot pose measurement with little cost and effort.

중수형 원자로 급수 배관 검사용 자율 주행형 자벌레 로봇 (Inch-Worm Robot with Automatic Pipe Tracking Capability for the Feeder Pipe Inspection of a PHWR)

  • 최창환;박병석;정현규;정승호
    • 제어로봇시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.125-132
    • /
    • 2008
  • This paper describes a mobile inspection robot with an automatic pipe tracking system for a feeder pipe inspection in a PHWR. The robot is composed of two inch worm mechanisms. One is for a longitudinal motion along a pipe, and the other is for a rotational motion in a circumferential direction to access all of the outer surfaces of a pipe. The proposed mechanism has a stable gripping capability and is easy to install. An automatic pipe tracking system is proposed based on machine vision techniques to make the mobile robot follow an exact outer circumference of a curved feeder pipe as closely as possible, which is one of the requirements of a thickness measurement system for a feeder pipe. The proposed sensing technique is analyzed to attain its feasibility and to develop a calibration method for an accurate measurement. A mobile robot and control system are developed, and the automatic pipe tracking system is tested in a mockup of a feeder pipe.

정밀영상 획득을 위한 카메라와 로봇 보정에 관한 연구 (A Study of Camera and Robot Calibration for Fine Image Acquisition)

  • 정원;박종락
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1999년도 추계공동학술대회 논문집:21세기지식경영과 정보기술
    • /
    • pp.493-505
    • /
    • 1999
  • 줌렌즈 카메라 보정은 매우 중요하고 적어도 두 가지 면에서 어려운 문제이다. 첫 번째는 실시간의 변화에 따라 카메라 내부 파라미터의 보정이고 두번째는 단일 렌즈 시스템의 핀홀모델은 줌렌즈시스템이 바로 적용하기가 어렵다. 그래서 이 논문에서는 이러한 문제의 일부분을 렌즈의 굴절현상, 초점 거리의 보정과 모델링, 확대에 관한 중요한 원리들뿐만 아니라 실제적으로 유용한 부분들을 기술하였다. 컴퓨터에 의해 제어되는 줌, 초점, 그리고 구경들의 실험결과가 제시되어있다.

  • PDF

카메라 교정 오차에 강인한 3차원 직선 경로 추종을 위한 전환 비주얼 서보잉 기법 (A Switched Visual Servoing Technique Robust to Camera Calibration Errors for Reaching the Desired Location Following a Straight Line in 3-D Space)

  • 김도형;정명진
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.125-134
    • /
    • 2006
  • The problem of establishing the servo system to reach the desired location keeping all features in the field of view and following a straight line is considered. In addition, robustness of camera calibration parameters is considered in this paper. The proposed approach is based on switching from position-based visual servoing (PBVS) to image-based visual servoing (IBVS) and allows the camera path to follow a straight line. To achieve the objective, a pose estimation method is required; the camera's target pose is estimated from the obtained images without the knowledge of the object. A switched control law moves the camera equipped to a robot end-effector near the desired location following a straight line in Cartesian space and then positions it to the desired pose with robustness to camera calibration error. Finally simulation results show the feasibility of the proposed visual servoing technique.

  • PDF

이동로봇의 추측항법 정확성을 개선하기 위한 자이로스코프의 정확도 교정 (Precision Calibration of Gyroscopes for Improving Dead-Reckoning Accuracy in Mobile Robots)

  • 고재평;윤재무;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.463-470
    • /
    • 2005
  • This paper describes a method aimed at improving dead-reckoning accuracy with gyroscopes in mobile robots. The method is a precision calibration procedure for gyroscopes, which effectively reduces the ill effects of nonlinearity of the scale-factor and temperature dependency. This paper also describes the methods of gyro data collection fur all ambient temperature$(-40^{\circ}C{\~}+80^{\circ}C)$ using cubic spline interpolation and defining the error function. The sensor used was a vibrating gyroscope called the EWTS82NA21, which is low lost and commonly used in car navigation system, made by Panasonic. This angular rate sensor utilizes Coriolis force generated by a vibrating tuning fork. The paper also provides experimental results to check the performance and the effectiveness of the proposed method.