• Title/Summary/Keyword: Robot Tracking

Search Result 1,015, Processing Time 0.026 seconds

Robust Trajectory Tracking Control of a Mobile Robot Combining PDC and Integral Sliding Mode Control (PDC와 적분 슬라이딩 모드 제어를 결합한 이동 로봇의 강인 궤도 추적 제어)

  • Park, Min-soo;Park, Seung-kyu;Ahn, Ho-kyun;Kwak, Gun-pyong;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1694-1704
    • /
    • 2015
  • In this paper, a robust trajectory tracking control method of a wheeled mobile robot is newly proposed combining the PDC and the ISMC. The PDC is a relatively simple and easy control method for nonlinear system compared to the other non-linear control methods. And the ISMC can have robust and stable control characteristics against model uncertainties and disturbances from the initial time by placing the states on the sliding plane with desired nominal dynamics. Therefore, the proposed PDC+ISMC trajectory tracking control method shows robust trajectory tracking performance in spite of external disturbance. The tracking performance of the proposed method is verified through simulations. Even though the disturbance increases, the proposed method keeps the performance of the PDC method when there is no disturbance. However, the PDC trajectory tracking control method has increasing tracking error unlike the proposed method when the disturbance increases.

Key Technologies in Robot Assistants: Motion Coordination Between a Human and a Mobile Robot

  • Prassler, Erwin;Bank, Dirk;Kluge, Boris
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2002
  • In this paper we describe an approach to coordinating the motion of a human with a mobile robot moving in a populated, continuously changing. natural environment. Our test application is a wheelchair accompanying a person through the concourse of a railway station moving side by side with the person. Our approach is based on a method for motion planning amongst moving obstacles known as Velocity Obstacle approach. We extend this method by a method for tracking a virtual target which allows us to vary the robot's heading and velocity with the locomotion of the accompanied person and the state of the surrounding environment.

A Robust Input Modification Approach for High Tracking Control Performance of Flexible Joint Robot

  • Park, Min-Kyu;Lee, Sang-Hun;Hur, Jong-Sung;Yim, Jong-Guk;Park, Jong-Hyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1249-1253
    • /
    • 2004
  • A robust input modification approach to the control of flexible joint robot is presented. In our previous study, we developed an observer based state feedback control for the suppression of residual vibration of a robot. The control was very effective in suppressing the inherent vibration of a flexible joint robot. However it did not meet high performance requirements under high speed motion and model uncertainties. As a solution of the problem, we present an input modification method with robustness against parametric uncertainties. The main idea of the proposed input modification method is to generate a modified reference position command for fast and accurate motion of the robot. Using this proposed method we can reduce the servo delay and settling time by about 60% and substantially improve the path accuracy.

  • PDF

Intelligent Countenance Robot, Humanoid ICHR (지능형 표정로봇, 휴머노이드 ICHR)

  • Byun, Sang-Zoon
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.175-180
    • /
    • 2006
  • In this paper, we develope a type of humanoid robot which can express its emotion against human actions. To interact with human, the developed robot has several abilities to express its emotion, which are verbal communication with human through voice/image recognition, motion tracking, and facial expression using fourteen Servo Motors. The proposed humanoid robot system consists of a control board designed with AVR90S8535 to control servor motors, a framework equipped with fourteen server motors and two CCD cameras, a personal computer to monitor its operations. The results of this research illustrate that our intelligent emotional humanoid robot is very intuitive and friendly so human can interact with the robot very easily.

  • PDF

A study on Precise Trajectory Tracking control of Robot system (로봇시스템의 정밀 궤적 추적제어에 관한 연구)

  • Lee, Woo-Song;Kim, Won-Il;Yang, Jun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2015
  • This study proposes a new approach to design and control for autonomous mobile robots. In this paper, we describes a fuzzy logic based visual servoing system for an autonomous mobile robot. An existing system always needs to keep a moving object in overall image. This mes difficult to move the autonomous mobile robot spontaneously. In this paper we first explain an autonomous mobile robot and fuzzy logic system. And then we design a fuzzy logic based visual servoing system. We extract some features of the object from an overall image and then design a fuzzy logic system for controlling the visual servoing system to an exact position. We here introduce a shooting robot that can track an object and hit it. It is illustrated that the proposed system presents a desirable performance by a computer simulation and some experiments.

Independent point Adaptive Fuzzy Sliding Mode Control of Robot Manipulator (로봇 매니퓰레이터의 독립관절 적응퍼지슬라이딩모드 제어)

  • Kim, Young-Tae;Lee, Dong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.126-132
    • /
    • 2002
  • Robot manipulator has highly nonlinear dynamics. Therefore the control of multi-link robot arms is a challenging and difficult problem. In this paper an independent joint adaptive fuzzy sliding mode scheme is developed leer control of robot manipulators. The proposed scheme does not require an accurate manipulator dynamic model, yet it guarantees asymptotic trajectory tracking despite gross robot parameter variations. Numerical simulation for independent joint control of a 3-axis PUMA arm will also be included.

Backward-Motion Control of Multiple Off-Hooked Trailers Using a Car-Like Mobile Robot (차량형 로봇을 이용한 다중 Off-Hooked 트레일러의 후진 제어)

  • Chung, Woo-Jin;Yoo, Kwang-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.4
    • /
    • pp.273-280
    • /
    • 2009
  • It is difficult to find a practical solution for the backward-motion control of a car-like mobile robot with n passive trailers. Unlike an omni-directional robot, a car-like mobile robot has nonholonomic constraints and limitations of the steering angle. For these reasons, the backward motion control problem of a car-like mobile robot with $n$ passive trailers is not trivial. In spite of difficulties, backing up a trailer system is useful for parking control. In this study, we proposed a mechanical alteration which is connecting $n$ passive trailers to the front bumper of a car to improve the backward motion control performance. Theoretical verification and simulations show that the backward-motion control of a general car with n passive trailers can be successfully carried out by using the proposed approach.

  • PDF

Automatic Mutual Localization of Swarm Robot Using a Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.4
    • /
    • pp.390-395
    • /
    • 2012
  • This paper describes an implementation of automatic mutual localization of swarm robots using a particle filter. Each robot determines the location of the other robots using wireless sensors. The measured data will be used for determination of the movement method of the robot itself. It also affects the other robots' self-arrangement into formations such as circles and lines. We discuss the problem of a circle formation enclosing a target that moves. This method is the solution for enclosing an invader in a circle formation based on mutual localization of the multi-robot without infrastructure. We use trilateration, which does require knowing the value of the coordinates of the reference points. Therefore, specifying the enclosure point based on the number of robots and their relative positions in the coordinate system. A particle filter is used to improve the accuracy of the robot's location. The particle filter is operates better for mutual location of robots than any other estimation algorithms. Through the experiments, we show that the proposed scheme is stable and works well in real environments.

GA-Based Fuzzy Control of Pseudo-2 Axes Robot Module (Pseudo-2축 로봇 모듈의 유전 알고리즘에 근거한 퍼지 제어)

  • 신승호;유영선;강희준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 1998
  • This paper presents the introduction of Pseudo-2 axes robot module and its GA-based fuzzy control implementation. Pseudo-2 axes robot module which use a single motor and controller for driving 2 joints of a robot mechanism, is devised towards a lower priced robot with its degree of freedom maintained GA-based Fuzzy controller is considered for the better control implementation of the developed system than the conventional PID controller. Here. the scaling factors of the membership function with high fitness values are selected using a genetic algorithm for a pulse-type input trajectory. The obtained controller also shows better trajectory tracking performance than a PID controller.

  • PDF