• Title/Summary/Keyword: Robot System Design

Search Result 1,198, Processing Time 0.029 seconds

3D Object Location Identification Using Finger Pointing and a Robot System for Tracking an Identified Object (손가락 Pointing에 의한 물체의 3차원 위치정보 인식 및 인식된 물체 추적 로봇 시스템)

  • Gwak, Dong-Gi;Hwang, Soon-Chul;Ok, Seo-Won;Yim, Jung-Sae;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.6
    • /
    • pp.703-709
    • /
    • 2015
  • In this work, a robot aimed at grapping and delivering an object by using a simple finger-pointing command from a hand- or arm-handicapped person is introduced. In this robot system, a Leap Motion sensor is utilized to obtain the finger-motion data of the user. In addition, a Kinect sensor is also used to measure the 3D (Three Dimensional)-position information of the desired object. Once the object is pointed at through the finger pointing of the handicapped user, the exact 3D information of the object is determined using an image processing technique and a coordinate transformation between the Leap Motion and Kinect sensors. It was found that the information obtained is transmitted to the robot controller, and that the robot eventually grabs the target and delivers it to the handicapped person successfully.

Design for Supporting Interoperation between Heterogeneous Networks in Personal Robot System

  • Choo, Seong-Ho;Li, Vitaly;Jang, Ik-Gyu;Park, Tae-Kyu;Jung, Ki-Duk;Choi, Dong-Hee;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.820-824
    • /
    • 2004
  • Personal Robot System in developing, have a module architecture, each module are connected through heterogeneors network systems like Ethernet, WLAN (802.11), IEEE1394 (Firewire), Bluetooth, USB, CAN, or RS-232C. In developing personal robot system we think that the key of robot performance is interoperability among modules. Each network protocol are well connected in the view of network system for the interoperability. So we make a bridging architecture that can routing, converting, transporting data packets with matcing each network's properties. Furthermore we suggest a advanced design scheme for realtime / non-realtime and control signal (short, requiring hard-realtime) / multimedia data (large, requiring soft-realtime). By some application systems, we could test performance, interoperability and stability. In this paper, we show our design concept, middleware architecture, and some applications systems using this middleware.

  • PDF

Optimization of a Fuel Cell Stack for Small Robot Systems (소형 로봇용 연료 전지 스택 설계 사양 최적화)

  • Hwang, S.W.;Choi, G.H.;Park, Sam.;Ench, R. Michael;Bates, Alex M.;Lee, S.C.;Kwon, O.S.;Lee, D.H.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.211-216
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFC) are the most appropriate for energy source of small robot applications. PEMFC has superior in power density and thermodynamic efficiency as compared with the Direct Methaol Fuel Cell (DMFC). Furthermore, PEMFC has lighter weight and smaller size than DMFC which are very important factors as small robot power system. The most significant factor of mobile robots is weight which relates closely with energy consumption and robot operation. This research tried to find optimum specifications in terms of type, number of cell, active area, cooling method, weight, and size. In order to find optimum 500W PEMFC, six options are designed in this paper and studied to reduce total stack weight by applying new materials and design innovations. However, still remaining problems are thermal management, robot space for energy sources, and so on. For a thermal management, design options need to analysis of Computational Fluid Dynamics (CFD) for determining which option has the improved performance and durability.

  • PDF

A Study of Localization Algorithm of HRI System based on 3D Depth Sensor through Capstone Design (캡스톤 디자인을 통한 3D Depth 센서 기반 HRI 시스템의 위치추정 알고리즘 연구)

  • Lee, Dong Myung
    • Journal of Engineering Education Research
    • /
    • v.19 no.6
    • /
    • pp.49-56
    • /
    • 2016
  • The Human Robot Interface (HRI) based on 3D depth sensor on the docent robot is developed and the localization algorithm based on extended Kalman Filter (EKFLA) are proposed through the capstone design by graduate students in this paper. In addition to this, the performance of the proposed EKFLA is also analyzed. The developed HRI system consists of the route generation and localization algorithm, the user behavior pattern awareness algorithm, the map data generation and building algorithm, the obstacle detection and avoidance algorithm on the robot control modules that control the entire behaviors of the robot. It is confirmed that the improvement ratio of the localization error in EKFLA on the scenarios 1-3 is increased compared with the localization algorithm based on Kalman Filter (KFLA) as 21.96%, 25.81% and 15.03%, respectively.

Design of Reactive Emotion Process for the Service Robot (서비스 로봇을 위한 리액티브 감정 생성 모델)

  • Kim, Hyoung-Rock;Kim, Young-Min;Park, Jong-Chan;Park, Kyung-Sook;Kang, Tae-Woon;Kwon, Dong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Emotion interaction between human and robot is an important element for natural interaction especially for service robot. We propose a hybrid emotion generation architecture and detailed design of reactive process in the architecture based on insight about human emotion system. Reactive emotion generation is to increase task performance and believability of the service robot. Experiment result shows that it seems possible for the reactive process to function for those purposes, and reciprocal interaction between different layers is important for proper functioning of robot's emotion generation system.

  • PDF

Design and Implementation of Web-based Software Engineering Tool for Robot (웹 기반 로봇 소프트웨어 공학 도구 설계 및 구현)

  • Hong, Chang-Ho;Park, Hong-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.908-915
    • /
    • 2011
  • As the requirement of user for robot functionality, the function and interface for controlling the robot system is more sophisticated and complicated. Accordingly development process of robot is more complicated and it takes much longer time to develop a robot system. Software development using project management tool is more important in software engineering because of the complexity of software, especially robot system. This paper proposes SEED (Software Engineering Equipment for Development), which is a web-based and integrated software engineering tool to provide independent tools for robot software development. SEED includes the document management tool, the software configuration management tool, the software testing tool on developing robot software and provide a functionality of collaborated and remote development due to WEB-based operations.

Design and development of an automated all-terrain wheeled robot

  • Pradhan, Debesh;Sen, Jishnu;Hui, Nirmal Baran
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.21-39
    • /
    • 2014
  • Due to the rapid progress in the field of robotics, it is a high time to concentrate on the development of a robot that can manoeuvre in all type of landscapes, ascend and descend stairs and sloping surfaces autonomously. This paper presents details of a prototype robot which can navigate in very rough terrain, ascend and descend staircase as well as sloping surface and cross ditches. The robot is made up of six differentially steered wheels and some passive mechanism, making it suitable to cross long ditches and landscape undulation. Static stability of the developed robot have been carried out analytically and navigation capability of the robot is observed through simulation in different environment, separately. Description of embedded system of the robot has also been presented and experimental validation has been made along with some details on obstacle avoidance. Finally the limitations of the robot have been explored with their possible reasons.

Experimental Application of Robot Operability Simulator (ROSim) to the Operability Assessment of Military Robots (로봇 운용성 시뮬레이터(ROSim)의 군사로봇 운용성 평가에 실험적 적용 연구)

  • Choi, Sangyeong;Park, Woosung
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • Military robots are expected to play an important role in the future battlefield, and will be actively engaged in dangerous, repetitive and difficult tasks. During the robots perform the tasks a human operator controls the robots in a supervisory way. The operator recognizes battlefield situations from remote robots through an interface of the operator control center, and controls them. In the meantime, operator workload, controller interface, robot automation level, and task complexity affect robot operability. In order to assess the robot operability, we have developed ROSim (Robot Operational Simulator) incorporating these operational factors. In this paper, we introduce the results of applying ROSim experimentally to the assessment of reconnaissance robot operability in a battle field. This experimental assessment shows three resulting measurements: operational control workload, operational control capability, mission success rate, and discuss its applicability to the defense robot research and development. It is expected that ROSim can contribute to the design of an operator control center and the design analysis of a human-robot team in the defense robot research and development.

Design of a biped robot using DSP and FPGA

  • Oh, sung-nam;Seo, jae-kwan;Lee, sung-ui;Kim, tab-il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.84.5-84
    • /
    • 2002
  • In order to be a stand-alone structure, a biped robot should be designed of the effective mechanic structure and the smaller hardware system. This paper shows the design methodology of a biped robot controller using FPGA(Field Programmable Gate Array). A hardware system consists of DSP(Digital Signal Processor) as the main CPU and FPGA as the motor controller...

  • PDF

Object Recognition and Target Tracking Using Motion Synchronization between Virtual and Real Robots (가상로봇과 실제로봇 사이의 운동 동기화를 통한 물체 인식 및 목표물 추적방안)

  • Ahn, Hyeo Gyeong;Kang, Hyeon Jun;Kim, Jin Beom;Jung, Ji Won;Ok, Seo Won;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.20-29
    • /
    • 2017
  • Motion synchronization between developed real and virtual robots for object recognition and target tracking is introduced. ASUS's XTION PRO Live is implemented as a sensor and configured to recognize walls and obstacles, and perceive objects. In order to create virtual reality, Unity 3D is adopted to be associated with the real robot, and the virtual object is controlled by using an input device. A Bluetooth serial communication module is used for wireless communication between the PC and the real robot. The motion information of a virtual object controlled by the user is sent to the robot. Then, the robot moves in the same way as the virtual object according to the motion information. Through motion synchronization, two scenarios, which map the real space and current object information with virtual objects and space, were demonstrated, yielding good agreement between the two spaces.