• 제목/요약/키워드: Robot Joint Module

검색결과 40건 처리시간 0.026초

비정형 환경에 적용하기 위한 뱀 로봇 개발 (Development of a Snake Robot for Unstructured Environment)

  • 신호철;김창회;이흥호
    • 로봇학회논문지
    • /
    • 제8권4호
    • /
    • pp.247-255
    • /
    • 2013
  • This paper shows the development of a snake robot (KAEROT-snake V) which consists of 16 1-DOF actuator modules and head module. The modules are connected serially and the joint axis of each module is rotated by $90^{\circ}$ with respect to the previous joint so that the snake robot can move in the 3D space. A tail actuator module includes slip-ring and metal connector. KAEROT-snake IV developed in prior research could move in the 3D space and climb up in a narrow pipe. But its design was not appropriate to the unstructured tough environment and its speed was somewhat slow. A new actuator module is designed to enclose all parts of the module so that any wire is not exposed. The size and weight of the new module was slightly reduced. And the rotation speed and torque of the joint was increased by about twice when compared with pre-module. An embedded controller was developed so small that it can be mounted inside the module. The performance of the developed robot was demonstrated through various locomotion experiments.

중공형 관절 구현을 위한 서보 드라이버 개발 (A Development of Servo Driver for Implementation of Hollow type Joint Module)

  • 문용선;노상현;조광훈;배영철
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.843-847
    • /
    • 2010
  • 최근 지능형 로봇 및 산업용 로봇 분야에서 최대 관심 중의 하나는 일체형 구조의 중공형 관절 모듈을 위한 모션 네트워크 기반 서보 드라이버 모듈의 설계 및 구현이다. 본 논문에서는 중공형 드라이버를 설계하고 이를 구현하였으며, 실험을 통하여 개발된 모듈의 성능을 검증하였다.

토크 오차 감소를 위한 디스크형 커플링을 갖는 토크센서가 내장된 로봇 관절모듈 (Joint Module with Joint Torque Sensor Having Disk-type Coupling for Torque Error Reduction)

  • 민재경;김휘수;송재복
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.133-138
    • /
    • 2016
  • 기존에는 로봇 말단에 6축 힘/토크 센서를 부착하여 로봇의 힘제어 및 충돌감지를 수행하였지만, 이 방법은 매우 고가이고, 로봇의 몸체에서 발생한 충돌을 감지할 수 없었다. 이의 대안으로 각 관절에 관절 토크센서를 장착하였으나, 토크 측정 시에 발생하는 다양한 오차로 인하여 실제 적용에 한계가 있었다. 이러한 문제를 해결하고자 본 연구에서는 정확한 토크 측정을 위한 관절 토크센서 및 이를 포함하는 관절모듈을 개발하였다. 제안된 관절모듈은 로봇에 인가되는 모멘트 부하를 지지하고, 조립 시 발생하는 응력을 감소시키기 위하여 토크센서에 디스크형 커플링을 첨가하여 원하는 회전토크만을 효과적으로 측정할 수 있도록 하였다. 본 논문에서는 다양한 실험을 통하여 제안한 토크센서의 성능을 검증하였다.

안정 파지를 위한 16자유도 역구동 관절을 가지는 인간형 로봇 손 개발 (Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping)

  • 양현대;박성우;박재한;배지훈;백문홍
    • 로봇학회논문지
    • /
    • 제6권3호
    • /
    • pp.220-229
    • /
    • 2011
  • This paper focuses on a development of an anthropomorphic robot hand. Human hand is able to dexterously grasp and manipulate various objects with not accurate and sufficient, but inaccurate and scarce information of target objects. In order to realize the ability of human hand, we develop a robot hand and introduce a control scheme for stable grasping by using only kinematic information. The developed anthropomorphic robot hand, KITECH Hand, has one thumb and three fingers. Each of them has 4 DOF and a soft hemispherical finger tip for flexible opposition and rolling on object surfaces. In addition to a thumb and finger, it has a palm module composed the non-slip pad to prevent slip phenomena between the object and palm. The introduced control scheme is a quitely simple based on the principle of virtual work, which consists of transposed Jacobian, joint angular position, and velocity obtained by joint angle measurements. During interaction between the robot hand and an object, the developed robot hand shows compliant grasping motions by the back-drivable characteristics of equipped actuator modules. To validate the feasibility of the developed robot hand and introduced control scheme, collective experiments are carried out with the developed robot hand, KITECH Hand.

인간형 다지 다관절 로봇 핸드의 개발 (Design and Control of Anthropomorphic Robot hand)

  • 천주영;최병준;채한상;문형필;최혁렬
    • 로봇학회논문지
    • /
    • 제5권2호
    • /
    • pp.102-109
    • /
    • 2010
  • In this study, an anthropomorphic robot Hand, called "SKKU Hand III" is presented. The hand has thirteen DOF(Degree-Of-Freedom) and is designed based on the skeletal structure of the human hand. Each finger module(except thumb module) has three DOF and four joints with a saddle joint mechanism which has two DOF at the base joint. Two distal joints of the finger module are mechanically coupled by a timing belt and pulleys. The thumb module is composed of a finger module and an additional actuator, which makes it possible to realize the opposition between the thumb and the other fingers. In addition, the palm DOF of the human hand is mimicked with a spatial link mechanism between the index finger and the thumb. Thus, it can grasp objects more stably and more strongly. For the modularization of the robotic hand all the driving circuits are embedded in the hand, and only the communication lines supporting CAN protocol with DC power cable are given as an interface. Therefore, it is possible to apply it to any robot system the interface. To validate the feasibility of the SKKU Hand III, a series of the representative grasp experiments such as power, precision, intermediate grasp etc. are carried out with the object around us and its operation is demonstrated.

서비스 로봇을 위한 모듈형 관절 메커니즘 설계 (Design of a Modular Type Joint Mechanism for a Service Robot)

  • 이희돈;한창수
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1272-1278
    • /
    • 2011
  • Mechanisms of the robot system should be developed according to the task. In this study, we propose improving adaptability of the robot mechanism with the modularized joint mechanism. Adaptability is the measure of the system ability to cope with change or uncertainty. Modular type joint has been widely used in development of various robots including reconfigurable robots. To build robotic systems more flexibly and quickly with low costs of manufacturing and maintenance, we have designed a modular type joint with one degree of freedom for general purpose. This module is designed to be compact, light-weight and self-controlled. In this design, we consider the kinematics and dynamics properties of the modular type joint.

선체 수직 외벽 Papering 용 로봇 모듈의 조합 최적설계의 개념적 접근 (Conceptional Approach for Assembly Reconfiguration of Papering Robot Modules)

  • 정원지;김성현;김기정;김효곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.2015-2018
    • /
    • 2005
  • In this paper, we are willing to prepare the reasonable optimization, Combinatorial Optimization and Genetic Algorithm. Thus we define position status of end-effect (or terminative link module) using promised form, (G, M(G), A(G), and so on.). For this preparing step, the reorganizing procedure of Link and Joint Module is necessary, like as enumerating the kinematically identical assembly group of several links and joints. Thus, we draw a G, directed graph in a first step. Because, directed graph contains the path information between adjacent Link Module and Joint Module. From the directed graph,G, we can incite the Incidence Matrix, M(G). The incidence matrix, M(G), contains the contact information of the Link (Joint) Module and the type of Link (Joint). At the end of this paper, we generalize the modular information as a matrix form, A(G). From this matrix, we can make a population of assembly status. That is the finial output of this paper.

  • PDF

인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발 (Development of Humanoid Joint Module for Safe Human-Robot Interaction)

  • 오연택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.