• Title/Summary/Keyword: Robot Driver

Search Result 84, Processing Time 0.025 seconds

FPGA Based Micro Step Motor Driver

  • Uk, Cho-Jung;Wook, Jeon-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.111.3-111
    • /
    • 2001
  • Automative system and robot are operated by motor. Recently, automative system and robot need correct operation and control for precise task. Therefore they need precise motor control technology. In present, controller needs precise motor control technology in automative system and robot. Usual step motor driver that has 200 steps per revolution is not proper. So we need micro step motor driver that is more precise then usual step motor driver. In this paper, micro step motor driver is used for precise control of step motor. The goal is precise operation and location control. This micro step motor driver is A3972SB that is made in Alloegro Company. It has serial port that receives two 6-bits linear DAC value. Almost all systems generate DAC value with micro processer and ...

  • PDF

Development of a magnetic caterpillar based robot for autonomous scanning in the weldment (용접부 자동 탐상을 위한 이동 로봇의 개발)

  • 장준우;정경민;김호철;이정기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.713-716
    • /
    • 2000
  • In this study, we present a mobile robot for ultrasonic scanning of weldment. magnetic Caterpillar mechanism is selected in order to travel on the inclined surface and vertical wall. A motion control board and motor driver are developed to control four DC-servo motors. A virtual device driver is also developed for the purpose of communicating between the control board and a host PC with Dual 'port ram. To provide the mobile robot with stable and accurate movement, PID control algorithm is applied to the mobile robot control. And a vision system for detecting the weld-line are developed with laser slit beam as a light source. In the experiments, movement of the mobile robot is tested inclined on a surface and a vertical wall.

  • PDF

Implementation and Evaluation of a Robot Operating System-based Virtual Lidar Driver (로봇운영체제 기반의 가상 라이다 드라이버 구현 및 평가)

  • Hwang, Inho;Kim, Kanghee
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.10
    • /
    • pp.588-593
    • /
    • 2017
  • In this paper, we propose a LiDAR driver that virtualizes multiple inexpensive LiDARs (Light Detection and Ranging) with a smaller number of scan channels on an autonomous vehicle to replace a single expensive LiDAR with a larger number of scan channels. As a result, existing SLAM (Simultaneous Localization And Mapping) algorithms can be used with no modifications developed assuming a single LiDAR. In the paper, the proposed driver was implemented on the Robot Operating System and was evaluated with an existing SLAM algorithm. The results show that the proposed driver, combined with a filter to control the density of points in a 3D map, is compatible with the existing algorithm.

THE SOLUTION OF HARDWARE OF ROBOT CONTROL SYSTEM (로봇 제어를 위한 시스템의 하드웨어 구성)

  • Bui-Quang, Duoc
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.474-479
    • /
    • 2004
  • This paper presents an economical solution of the control system of robot, which is widely applied to sophisticated robots. The proposed control system is built on a foundation that is combined between driver motor, PC controlled servo-motor control card, and driver software. The solution had been applied to design hardware of controlled 6-DOF (Degree Of Freedom) robot. The controlled system is used to control VML Robot (Vehicle Mechatronic Lab). Addition, because of flexibility of the solution, the controller can be suit with widely robots at used servo-moto.

  • PDF

Development of a Robot Element Design Program (로봇 요소품 설계 프로그램 개발)

  • Jung Il Ho;Kim Chang Su;Seo Jong Hwi;Park Tae Won;Kim Hee Jin;Choi Jae Rak;Byun Kyng Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.113-120
    • /
    • 2005
  • This paper presents the development of the design of the robot element. Robot element design is an important part of robot design since it decides the performance and life time of the robot. It is necessary that the robot kinematics and the robot dynamics are accomplished to design the robot elements. The robot kinematics and dynamics determine the design parameters of the element. We developed a robot element design program with which a designer can design the robot element with convenience and reliability. The program is composed of motor, harmonic driver and ball-screw design. The program is founded on the virtual robot design program. The virtual robot design program is the powerful software which may be used to solve various problems of the robot kinematics and dynamics. The robot element design program may be used to calculate the design parameters of the element that are necessary to design robot element. Therefore, the designer can decide upon the available robot elements available to perform the objective of the robot. The robot element design program is expected to increase the competitiveness and efficiency of the robot industry.

Implementation of Web Based Multi-Axis Force Control & Monitoring Systems for an intelligent robot (지능형 로봇을 위한 웹 기반 다축 힘 제어 및 감시시스템 구현)

  • Lee, Hyun-Chul;Nam, Hyun-Do;Kang, Chul-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.33-35
    • /
    • 2004
  • In this paper, web based monitoring systems are implemented for multi-axis force control systems of an intelligent robot. Linux operating systems are ported to an embedded system which Include a Xscale processor to implement a web based monitoring system. A device driver is developed to receive data from multi-axis force sensors of intelligent robots. To control this device driver, a socket program for Labview is also developed.

  • PDF

A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot (4륜조향 자율주행로봇의 최적속도에 관한 연구)

  • Kim, Mi-Ok;Lee, Jung-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

A Development of Servo Driver for Implementation of Hollow type Joint Module (중공형 관절 구현을 위한 서보 드라이버 개발)

  • Moon, Yong-Sun;Roh, Sang-Hyun;Cho, Kwang-Hoon;Bae, Young-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.843-847
    • /
    • 2010
  • Recently, one of the most interesting issue in the intelligent robot and the industrial robot area is the design and an implementation of servo driver module based on motion network for hollow type joint module of all-in-one structure. In this paper, we designed and implemented for hollow type driver, and also verified the performance of the developed module through the experiment.

A study on the driver and controller design of the biped robot (이족보행로보트의 구동부 및 제어부의 설계에 관한 연구)

  • Shim, In-Sup;Kim, Ju-Han;Kim, Dong-Jun;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.871-873
    • /
    • 1995
  • The purpose of this paper is to design and construct the compact type joint driver and controller of the biped robot. This biped robot will be designed to be suitable for the practical usages and applications in the work environment, which is not plat floor, like a stairs by taking the stand-alone style that equipped all the parts except power sources. Generally, highly nonlinear motion dynamics of the biped robot is realized to linear approximations by installing a high-ratio speed reducer at each joint and dividing motions into a several piecewise linear motions, which is realized by the digital controller design techniques. This biped robot has symmetrical structure to get the stable walking ability and also the hierachical structure to control each joint as well. That is, all of the joint controllers are connected to the main controller in the composition of overall controllers. The driver and controller of each joint uses PI controller that compensate the velocity and position errors by the data of the encoder. And the signal characteristics of each joint controller forms a trapezoid speed profile which is predefined by the values of direction, maximum velocity and position.

  • PDF

Implementation of Motor Driver for Control of AC Servo Motor of Robot (로봇의 다축 모션 제어용 AC 서보 모터 드라이버 구현)

  • Kim, Yong-Jin;Bae, Young-Chul;Kim, Kwang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.553-558
    • /
    • 2012
  • An effort for motion control of multi-axis in robot have been continued recently. In this paper, we propose implementation method for AC servo driver that can be easily motion control of multi-axis in robot. This proposed method implement EtherCAT communication technologies of bi-directional optical communication based on single optical core method that applied WDM for communication between control stage which is upper and AC servo drive stage.