• Title/Summary/Keyword: Robot Controller

Search Result 1,554, Processing Time 0.024 seconds

Moving Plan Design of Autonomous Mobile Robot Using Fuzzy Controller (퍼지제어기를 이용한 이동로봇의 이동계획 설계)

  • Park, Kyung-Seok;Yi, Kyung-Woong;Jeong, Heon;Choi, Han-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.38-41
    • /
    • 2003
  • An Autonomous Mobile Robot(AMR) performs duty by sensing a recognized situation and controlling suitably. The existing algorithm has some advantages that it is possible to express the obstacle exactly and the robot is sensitive to the change of environment. However, this algorithm needs to control repeatedly according to the modelling and working environment that requires a great quantity of calculations. In this paper, We supplement shortcoming and designed direction algorithm of AMR using fuzzy controller. Fuzzy controller does not derive special quality spinning expression for system, and uses rules by value expressed by language. It is used extensively to non-linear, plant which mathematical modelling is difficult etc... Fuzzy control algorithm of AMR that is used by this research applies obstacle position, distance of obstacle, Progress direction of robot, speed of robot, Perception area of sensor, etc... by fuzzy control and decide steering angle of robot.

  • PDF

Design of a Robust Adaptive Controller and Its Implementation on Robot Manipulators for Trajectory Tracking (로봇 매니퓰레이터의 궤적 추종을 위한 강인한 적응제어기의 설계 및 구현)

  • 길진수;한상완;조원영;홍석교
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.479-486
    • /
    • 1998
  • In this paper, the design and the implementation of a robust adaptive controller for trajectory tracking of robot manipulator is presented. The proposed control scheme ensures that tracking errors are converged to some boundaries in the presence of a state-dependent input disturbances as well as the ideal case without any prior knowledge of the robot manipulator parameters. The 3 DOF robot manipulator including actuator dynamics is used for the implementation of the proposed control scheme. The experimental results show that the proposed control scheme is valid for trajectory tracking of the robot manipulator.

  • PDF

Development of control system for High performance Industrial Robots using Visual Sensor (시각센서를 이용한 고기능 산업용 로보트의 제어 시스템 연구)

  • Park, Hea-Sook;Kim, Nam-Jeong;Jang, Dong-Sik;Park, Gwi-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.131-140
    • /
    • 1992
  • The purpose of this study is to improve the performance of robot by providing visual function with robot and developing high-functioned controller and control program. The developed high-functioned controller and software have the better accuracy and flexibility in the movement of robot by complementing the existing robot controller and software problems. To provide visual function to robot, camera calibration, thresholding and contouring tools are also developed and applied in this study. These tools help robot recognize the central points and orientations of objects on work-bench.

  • PDF

Application of Controller Area Network to Humanoid Robot (휴머노이드 로봇에 대한 CAN(Controller Area Network) 적용)

  • Ku, Ja-Bong;Huh, Uk-Youl;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.77-79
    • /
    • 2004
  • Because robot hardware architecture generally is consisted of a few sensors and motors connected to the central processing unit, this type of structure is led to time consuming and unreliable system. For analysis, one of the fundamental difficulties in real-time system is how to be bounded the time behavior of the system. When a distributed control network controls the robot, with a central computing hub that sets the goals for the robot, processes the sensor information and provides coordination targets for the joints. If the distributed system supposed to be connected to a control network, the joints have their own control processors that act in groups to maintain global stability, while also operating individually to provide local motor control. We try to analyze the architecture of network-based humanoid robot's leg part and deal with its application using the CAN(Controller Area Network) protocol.

  • PDF

A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term (RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구)

  • Sung-Jae Kim;Jin-Ho Suh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

Internet Based Tele-operation of the Autonomous Mobile Robot (인터넷을 통한 자율이동로봇 원격 제어)

  • Sim, Kwee-Bo;Byun, Kwang-Sub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.692-697
    • /
    • 2003
  • The researches on the Internet based tole-operation have received increased attention for the past few years. In this paper, we implement the Internet based tele-operating system. In order to transmit robustly the surroundings and control information of the robot, we make a data as a packet type. Also in order to transmit a very large image data, we use PEG compressive algorithm. The central problem in the Internet based tele-operation is the data transmission latency or data-loss. For this specific problem, we introduce an autonomous mobile robot with a 2-layer fuzzy controller. Also, we implement the color detection system and the robot can perceive the object. We verify the efficacy of the 2-layer fuzzy controller by applying it to a robot that is equipped with various input sensors. Because the 2-layer fuzzy controller can control robustly the robot with various inputs and outputs and the cost of control is low, we hope it will be applied to various sectors.

Design of Small Scale Quadruped Walking Robot and Realiazion of Static Gait (소형사각 보행로보트의 제작과 정적걸음새의 구현)

  • 배건우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.398-402
    • /
    • 1996
  • This paper addresses the design and the gait control of quadruped walking robot. First, we concern the mechanical and electronical(control system) hardware of walking robot, and the second is the results of experiments. The walking robot is the most suitable form to substitute fot human being. So walking robot is worthy of research. The quadruped walking robot and control system is the simplest type of walking robot, therefore we designed a small seale robot for realization of static gait. The robot is designed commpactly and its legs are constructed parallel link type and able to move freely in space. Control system consists of one upper level controller and four lower level controllers. The upper level controller plans the walking path and commands the low level controllers to follow the planned path. The main function of low level cotrollers is control of motors. Total number of motors is twealve and they operate four legs. And robot is ordered to walk and realize static wave gait.

  • PDF

A Learning Controller for Repetitive Gait Control of Biped Walking Robot

  • Kho, Jae-Won;Lim, Dong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1464-1468
    • /
    • 2004
  • This paper presents a learning controller for repetitive gait control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured according to the walking period through the iterative learning, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of learning control to biped robotic motion is shown via dynamic simulation with 12-DOF biped walking robot.

  • PDF

Moving Target Tracking using Vision System for an Omni-directional Wheel Robot (전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적)

  • Kim, San;Kim, Dong-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.

A study on the implementation of new ROBOT CONTROLLER with MULTI-TASKING and MULTI-ROBOT functions (다중 processor를 이용한 multi-robot용 제어기의 구현에 대한 연구)

  • 김성락;추상원;이충기;임형준;이용중;이인옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.507-510
    • /
    • 1988
  • The main subject of this paper is the development of new ROBOT CONTROLLER, which can support MULTI-TASKING and MULTI-ROBOT functions. The system consists of various kinds of CPU modules according to their independent jobs. Acceleration and Deceleration profile is given in order to achieve the smooth robot motion and high cycle time. Further the communication capacity should be upgraded to meet the various kinds of peripheral PA devices.

  • PDF