• Title/Summary/Keyword: Robot Control System

Search Result 2,879, Processing Time 0.031 seconds

Brushed Servo-Motor Control System for Industrial Robot (산업용 로봇을 위한 직류 서보전동기 제어시스템)

  • Sun-Hag Hong
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • In this paper, brushed servo control system for industrial robot is realized under GUI environment. Brushed servo motor has 400W capacities, 1000ppr optic encoder and electric brake load. Especially, driving unit is composed of full-bridge MOSFET semiconductors with 9540 and 540 FET ICs. Control unit has PIC 16C74 microprocessor[l,2,3], RS-232 communication ports, URD current sensor, and GAL 16R8ACN. Servo control system is controlled by PID control method[5,8] with varying control parameters and load capacities. Brushed servo control systems which are proposed in this raper are applied to industrial robot control system.

  • PDF

Design and Implementation of Bird Repellent System (조류 퇴치 시스템의 설계 및 구현)

  • Hong, Hyunggil;Cho, Yongjun;Woo, Senongyong;Song, Suhwan;Oh, Jangseok;Yun, Haeyong;Kim, Dae Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.104-109
    • /
    • 2019
  • Damage caused by wild animals such as pheasants and magpies is a problem in rural areas. A bird repellent system based on sensing and repelling farm pest animals and birds is proposed herein. This system is equipped with a bird model part on a supporting platform and comprises a sound source generator, a system control user interface, and a sensor in the center. The sensor is composed of an illuminance sensor and a PIR sensor. The illuminance sensor distinguishes between day and night, whereas the PIR sensor detects birds or wild animals and outputs them from the sound generator. The entire system can be managed easily by the user interface and system control.

Force Control of an Arm of Walking Training Robot Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 보행 훈련 로봇 팔의 힘제어)

  • 신호철;강창회;정승호;김승호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.38-44
    • /
    • 2002
  • A walking training robot is proposed to provide stable and comfortable walking supports by reducing body weight load partially and a force control of an arm of walking training robot using sliding mode controller is also proposed. The current gait training apparatus in hospital are ineffective for the difficulty in keeping constant unloading level and for the constraint of patients' free walking. The proposed walking training robot effectively unloads body weight during walking. The walking training robot consists of an unloading manipulator and a mobile platform. The manipulator driven by an electro-mechanical linear mechanism unloads body weight in various levels. The mobile platform is wheel type, which allows patients to walt freely. The developed unloading system has advantages such as low noise level, lightweight, low manufacturing cost and low power consumption. A system model fur the manipulator is established using Lagrange's equation. To unload the weight of the patients, sliding mode control with p-control is adopted. Both control responses with a weight and human walking control responses are analyzed through experimental implementation to demonstrate performance characteristics of the proposed force controller.

Dynamic Visual Servoing of Robot Manipulators (로봇 메니퓰레이터의 동력학 시각서보)

  • Baek, Seung-Min;Im, Gyeong-Su;Han, Ung-Gi;Guk, Tae-Yong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.41-47
    • /
    • 2000
  • A better tracking performance can be achieved, if visual sensors such as CCD cameras are used in controling a robot manipulator, than when only relative sensors such as encoders are used. However, for precise visual servoing of a robot manipulator, an expensive vision system which has fast sampling rate must be used. Moreover, even if a fast vision system is implemented for visual servoing, one cannot get a reliable performance without use of robust and stable inner joint servo-loop. In this paper, we propose a dynamic control scheme for robot manipulators with eye-in-hand camera configuration, where a dynamic learning controller is designed to improve the tracking performance of robotic system. The proposed control scheme is implemented for tasks of tracking moving objects and shown to be robust to parameter uncertainty, disturbances, low sampling rate, etc.

  • PDF

Autonomous Navigation System of Mobile Robot Using Laser Scanner for Corridor Environment (레이저 스캐너를 사용한 이동로봇의 복도 자율 주행 시스템)

  • Park, Jong-Kwan;Park, Tae-Hyeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1044-1049
    • /
    • 2015
  • This paper proposes an autonomous navigation system of mobile robots for indoor corridor environment. The system uses a laser scanner but does not use reflectors. The laser scanner measures the distance between robot and structures such as wall, pillar, and fixtures. Adaptive breakpoint detector and modified IEPF (iterative endpoint fit) are developed to find mark points from the distance data. The robot path for corridor is then generated using the angle histogram of the mark points. The experimental results are finally presented to show the effectiveness of the proposed method.

High speed and accurate positioning control of robot manipulator by using disturbance observer (외란 관측기를 이용한 직접 구동형 로봇의 고속.고정도 제어)

  • 서일홍;엄광식;권기호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.948-951
    • /
    • 1996
  • High-speed/high-accuracy control of robot manipulator becomes more and more stringent because of the external disturbance and nonlinear characteristics. To meet this ends, lots of control strategies were proposed in the past such as the computed torque control, the nonlinear decoupled feedback control, and adaptive control. These control methods need computations of the inverse dynamics and require much computational effort. Recently, a disturbance observer with unmodeled robot dynamics and simple algorithms to motion control have been widely studied. This paper proposes a motor control strategy based on the disturbance observer which estimate the disturbance of each joint from input-output relationship of the actuator and eliminate the estimated disturbance including the torque due to modeling errors, coupling force, nonlinear friction, and so on. To apply the disturbance observer to closedloop system like velocity servo pack, the modified control structure was constructed and shown that it is equivalent to a disturbance observer in open-loop system. Finally, using the proposed approach, simulation and experiments were carried out for a two-degree-of-freedom SCARA type direct drive robot, and show some results to verify the effectiveness of the proposed algorithms.

  • PDF

Balancing and Driving Control of a Bicycle Robot (자전거로봇의 균형제어 및 주행)

  • Lee, Suk-In;Lee, In-Wook;Kim, Min-Sung;He, He;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.532-539
    • /
    • 2012
  • This paper proposes a balancing and driving control system for a bicycle robot. A reaction wheel pendulum control method is adopted to maintain the balance while the bicycle robot is driving. For the driving control, PID control algorithm with a variable gain adjustment has been developed in this paper, where the gains are heuristically adjusted during the experiments. To measure the angles of the wheels the encoders are used. For the balancing control, a roll controller is designed with a non-model based algorithm to make the shortest cycle. The tilt angle is measured by the fusion of the acceleration and gyroscope sensors, which is used to generate the control input of the roll controller to make the tilt angle zero. The performance of the designed control system has been verified through the real experiments with the developed bicycle robot.

Variable structure control system design guaranteeing continuity of control signal

  • Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.16-19
    • /
    • 1996
  • In this paper, a sliding mode control scheme that guarantees the smoothness of the control signal and the exponential error convergence is proposed for robot manipulators. The proposed method inserts a low pass filter (LPF) in front of the plant, and the virtual controller is designed for the virtual plant - the combination of the LPF and the robot manipulator. The virtual control signal contains high frequency components because of a switching function. The real control signal, however, always shows a smooth curve since it is an output of the LPF. In addition to the smoothness of the control signal is always assured, the overall system is in the sliding mode at all times, that is, its performance is always invariant under the existence of parameter uncertainties and external disturbances. The closed-loop system is shown to be globally exponentially stable.

  • PDF

Modeling and Calibration of a 3D Robot Laser Scanning System (3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션)

  • Lee Jong-Kwang;Yoon Ji Sup;Kang E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.

The Design of USB Robot Control System for Synchro-drive Mobile Robot (동기식 이동로봇을 위한 USB 로봇 제어시스템 설계)

  • 남중현;권오상;이응혁;장원석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.159-162
    • /
    • 2000
  • This paper addresses the design and implementation problem of the mobile robot with the synchronous driving mechanism that consists of modular control systems based on the Universal Serial Bus (USB). Recently, the USB have attracted the hardware developers'interests due to its low cost, compatibility, and extenability. In particular, the USB enables us to organize the whole system in the modular manner very easily, and this property plays a very important role in shortening the developing time in implementing the target system, for example, the mobile robot system. In this paper, we implement the USB motion controller and the USB ultrasonic sensor system and verified the validity and the effectiveness of the proposed system through the real experiments including the mobile robot navigation and the environment recognition.

  • PDF