• Title/Summary/Keyword: Robot Control System

Search Result 2,879, Processing Time 0.03 seconds

Characteristics of Needle Insertion Performance of Automated Biopsy Device for Robotic Needle Insertion Type Intervention: Insertion Depth and Accuracy (로봇 자동화 바늘삽입형 중재시술을 위한 자동화 생검장치의 바늘삽입 특성: 바늘삽입 깊이 및 삽입정확도)

  • Moon, Youngjin;Choi, Jaesoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.565-570
    • /
    • 2016
  • This paper presents the characteristics related to needle insertion of a robotic device for the automated biopsy procedure. The automated biopsy device, a main component of the robotic needle insertion type intervention system, allows performance of the full biopsy procedure, except for anesthesia, without direct handling of a radiologist or a tele-operated control. In this study, the needle length parameters corresponding to various insertion depths and precision for needle insertion of the automated biopsy device, are discussed. There were two combinations of needle length parameters for appropriate needle insertion and motion capture-based measurement was performed; 0.156 mm error for the 90 mm length commanded insertion displacement was measured. The pre-defined goal is a maximum 1 mm error and thus our measured error is within the acceptable range. In the repeatability check, it was also shown that the device can implement a highly accurate insertion.

Implementation of a Smartphone Interface for a Personal Mobility System Using a Magnetic Compass Sensor and Wireless Communication (지자기 센서와 무선통신을 이용한 PMS의 스마트폰 인터페이스 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.48-56
    • /
    • 2015
  • In the paper, a smartphone-controlled personal mobility system(PMS) based on a compass sensor is developed. The use of a magnetic compass sensor makes the PMS move according to the heading direction of a smartphone controlled by a rider. The proposed smartphone-controlled PMS allows more intuitive interface than PMS controlled by pushing a button. As well, the magnetic compass sensor makes a role in compensating for the mechanical characteristics of motors mounted on the PMS. For adequate control of the robot, two methods: absolute and relative direction methods based on the magnetic compass sensor and wireless communication are presented. Experimental results show that the PMS is conveniently and effectively controlled by the proposed two methods.

Design of Robotic Prosthetic Leg for Above-knee Amputees (대퇴 절단자들을 위한 로봇 의지의 설계)

  • Yang, Un-Je;Kim, Jung-Yup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.913-922
    • /
    • 2014
  • This paper describes design of a robotic above-knee prosthetic leg which is powered by electrical motors. As a special feature, the robotic prosthetic leg has enough D.O.F.s. For mimicking the human leg, the robotic prosthetic leg is composed of five joints. Three of them are called 'active joint' which is driven by electrical motors. They are placed at the knee-pitch-axis, the ankle-pitch-axis, and the an! kle-roll-axis. Every 'active joint' has enough torque capacity to overcome ground reaction forces for walking and is backlashless for accurate motion generation and high-performance balance control. Other two joints are called 'passive joint' which is activating by torsion spring. They are placed at the toe part and designed by Crank-rocker mechanism using kinematic design approach. In order to verify working performance of the robotic prosthetic leg, we designed a gait trajectory through motion capture technique and experimentally applied it to the robot.

Adaptation of Motion Capture Data of Human Arms to a Humanoid Robot Using Optimization

  • Kim, Chang-Hwan;Kim, Do-Ik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2126-2131
    • /
    • 2005
  • Interactions of a humanoid with a human are important, when the humanoid is requested to provide people with human-friendly services in unknown or uncertain environment. Such interactions may require more complicated and human-like behaviors from the humanoid. In this work the arm motions of a human are discussed as the early stage of human motion imitation by a humanoid. A motion capture system is used to obtain human-friendly arm motions as references. However the captured motions may not be applied directly to the humanoid, since the differences in geometric or dynamics aspects as length, mass, degrees of freedom, and kinematics and dynamics capabilities exist between the humanoid and the human. To overcome this difficulty a method to adapt captured motions to a humanoid is developed. The geometric difference in the arm length is resolved by scaling the arm length of the humanoid with a constant. Using the scaled geometry of the humanoid the imitation of actor's arm motions is achieved by solving an inverse kinematics problem formulated using optimization. The errors between the captured trajectories of actor arms and the approximated trajectories of humanoid arms are minimized. Such dynamics capabilities of the joint motors as limits of joint position, velocity and acceleration are also imposed on the optimization problem. Two motions of one hand waiving and performing a statement in sign language are imitated by a humanoid through dynamics simulation.

  • PDF

Isolated Word Recognition with the E-MIND II Neurocomputer (E-MIND II를 이용한 고립 단어 인식 시스템의 설계)

  • Kim, Joon-Woo;Jeong, Hong;Kim, Myeong-Won
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1527-1535
    • /
    • 1995
  • This paper introduces an isolated word recognition system realized on a neurocomputer called E-MIND II, which is a 2-D torus wavefront array processor consisting of 256 DNP IIs. The DNP II is an all digital VLSI unit processor for the EMIND II featuring the emulation capability of more than thousands of neurons, the 40 MHz clock speed, and the on-chip learning. Built by these PEs in 2-D toroidal mesh architecture, the E- MIND II can be accelerated over 2 Gcps computation speed. In this light, the advantages of the E-MIND II in its capability of computing speed, scalability, computer interface, and learning are especially suitable for real time application such as speech recognition. We show how to map a TDNN structure on this array and how to code the learning and recognition algorithms for a user independent isolated word recognition. Through hardware simulation, we show that recognition rate of this system is about 97% for 30 command words for a robot control.

  • PDF

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

Development of Automated Welding System for Construction: Focused on Robotic Arm Operation for Varying Weave Patterns

  • Doyun Lee;Guang-Yu Nie;Aman Ahmed;Kevin Han
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.2
    • /
    • pp.115-124
    • /
    • 2022
  • Welding is a significant part of the construction industry. Since most high-rise building construction structures rely on a robust metal frame welded together, welding defect can damage welded structures and is critical to safety and quality. Despite its importance and heavy usage in construction, the labor shortage of welders has been a continuous challenge to the construction industry. To deal with the labor shortage, the ultimate goal of this study is to design and develop an automated robotic welding system composed of a welding machine, unmanned ground vehicle (UGV), robotic arm, and visual sensors. This paper proposes and focuses on automated weaving using the robotic arm. For automated welding operation, a microcontroller is used to control the switch and is added to a welding torch by physically modifying the hardware. Varying weave patterns are mathematically programmed. The automated weaving is tested using a brush pen and a ballpoint pen to clearly see the patterns and detect any changes in vertical forces by the arm during weaving. The results show that the weave patterns have sufficiently high consistency and precision to be used in the actual welding. Lastly, actual welding was performed, and the results are presented.

Magnetic Induction Soldering Process for Mounting Electronic Components on Low Heat Resistance Substrate Materials (저 내열 기판소재 전자부품 실장을 위한 자기유도 솔더링)

  • Youngdo Kim;Jungsik Choi;Min-Su Kim;Dongjin Kim;Yong-Ho Ko;Myung-Jin Chung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • Due to the miniaturization and multifunctionality of electronic devices, a surface mount technology in the form of molded interconnect devices (MID), which directly forms electrodes and circuits on the plastic injection parts and mounts components and parts on them, is being introduced to overcome the limitations in the mounting area of electronic components. However, when using plastic injection parts with low thermal stability, there are difficulties in mounting components through the conventional reflow process. In this study, we developed a process that utilizes induction heating, which can selectively heat specific areas or materials, to melt solder and mount components without causing any thermal damage to the plastic. We designed the shape of an induction heating Cu coil that can concentrate the magnetic flux on the area to be heated, and verified the concentration of the magnetic flux and the degree of heating on the pad part through finite element method (FEM). LEDs, capacitors, resistors, and connectors were mounted on a polycarbonate substrate using induction heating to verify the mounting process, and their functionality was confirmed. We presented the applicability of a selective heating process through magnetic induction that can overcome the limitations of the reflow method.

Cloudboard: A Cloud-Based Knowledge Sharing and Control System (클라우드보드: 클라우드 기반 지식 공유 및 제어 시스템)

  • Lee, Jaeho;Choi, Byung-Gi;Bae, Jae-Hyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • As the importance of software to society has grown, more and more schools worldwide teach coding basics in the classroom. Despite the rapid spread of coding instruction in grade schools, experience in the classroom is certainly limited because there is a gap between the curriculum and the existing computing environment such as the mobile and cloud computing. We propose an approach to fill this gap by using a mobile environment and the robot on the cloud-based platform for effective teaching. In this paper, we propose an architecture called Cloudboard that enables knowledge sharing and collaboration among knowledge providers in the cloud-based robot platforms. We also describe five representative architectural patterns that are referenced and analyzed to design the Cloudboard architecture. Our early experimental results show that the Cloudboard can be effective in the development of collective robotic systems.

A Kalman filter with sensor fusion for indoor position estimation (실내 측위 추정을 위한 센서 융합과 결합된 칼만 필터)

  • Janghoon Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.441-449
    • /
    • 2021
  • With advances in autonomous vehicles, there is a growing demand for more accurate position estimation. Especially, this is a case for a moving robot for the indoor operation which necessitates the higher accuracy in position estimation when the robot is required to execute the task at a predestined location. Thus, a method for improving the position estimation which is applicable to both the fixed and the moving object is proposed. The proposed method exploits the initial position estimation from Bluetooth beacon signals as observation signals. Then, it estimates the gravitational acceleration applied to each axis in an inertial frame coordinate through computing roll and pitch angles and combining them with magnetometer measurements to compute yaw angle. Finally, it refines the control inputs for an object with motion dynamics by computing acceleration on each axis, which is used for improving the performance of Kalman filter. The experimental assessment of the proposed algorithm shows that it improves the position estimation accuracy in comparison to a conventional Kalman filter in terms of average error distance at both the fixed and moving states.