• Title/Summary/Keyword: Robot Control System

Search Result 2,876, Processing Time 0.028 seconds

Study of integrated control system for factory automation (공장자동화를 위한 통합제어시스템에 관한 연구)

  • 최경현;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1245-1248
    • /
    • 1996
  • This paper describes a cell programming environment that deals with problems associated with programming Flexible Manufacturing Cells(FMCs). The environment consists of the cell programming editor and the automatic generation module. In the cell programming editor, cell programmers can develop cell programs using task level description set which supports task-oriented specifications for manipulation cell activities. This approach to cell programming reduces the amount of details that cell programmers need to consider and allows them to concentrate on the most important aspects of the task at hand. The automatic generation module is used to transform task specifications into executable programs used by cell constituents. This module is based on efficient algorithm and expert systems which can be used for optimal path planning of robot operations and optimal machining parameters of machine tool operations. The development tool in designing the environment is an object-oriented approach which provides a simple to use and intuitive user interface, and allows for an easy development of object models associated with the environment.

  • PDF

Time-optimal Trajectory Planning for a Robot System under Torque and Impulse Constraints

  • Cho, Bang-Hyun;Choi, Byoung-Suk;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, moving a fragile object from an initial point to a specific location in the minimum time without damage is studied. In order to achieve this goal, initially, the maximum acceleration and velocity ranges are specified. These ranges can be dynamically generate on the planned path by the manipulator. The path can be altered by considering the geometrical constraints. Later, considering the impulsive force constraint on the object, the range of maximum acceleration and velocity are obtained to preserve object safety while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of acceleration and velocity. This time-optimal trajectory planning can be applied to real applications and is suitable for both continuous and discrete paths.

Performance Comparison of the LRF and CCD Camera under Non-Visibility (Dense Aerosol) Environments (비 가시 환경에서의 LRF와 CCD 카메라의 성능비교)

  • Cho, Jai Wan;Choi, Young Soo;Jeong, Kyung Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.367-373
    • /
    • 2016
  • In this paper, range measurement performance of LRF (Laser Range Finder) module and image contrast of color CCD camera are evaluated under the aerosol (high temperature steam) environments, which are simulated severe accident conditions of the LWR (Light-Water-Reactor) nuclear power plant. Data of LRF and color CCD camera are key informations, which are needed in the implementation of SLAM (Simultaneous Localization and Mapping) function for emergency response robot system to cope with urgently accidents of the nuclear power plant.

A Study on Stable Grasping Control of Dual-Fingers with Soft-Tips

  • Sim, Jae-Goon;Yang, Soon-Yong;Han, Hyun-Yong;Lee, Byung-Ryon;Ahn, kyung-Kwan;Kim, Sung-Su;Park, Kyung-Taek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.4-108
    • /
    • 2002
  • This paper aims to derive a mathematical model of the dynamics of handling tasks in robot fingers which stably grasps and manipulates a rigid object with some dexterity. Firstly, a set of differential equation describing dynamics of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. Secondly, problems of controlling both the internal force and the rotation angle of the grasped object under the constraints of tight area-contacts are discussed. The effect of geometric constraints of area-contacts on motion of the overall system is analyzed and a method of computer simulation for differential-algebraic equations of overall...

  • PDF

A FORCE/POSITION CONTROL FOR TWO-ARM MOTION COORDINATION AND STABILITY ROBUSTNESS ANALYSIS

  • 최형식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.215-219
    • /
    • 1992
  • This paper presents a motion coordination of two robot manipulators coordinating an object. To coordinate the object, a force/position control scheme in a mode of leaer/follower is devised. The dynamics of the object are incorporated into the dynamics of the leader arm, which yields a reduced order model of two arm system. In order to regulate interaction forces between two arm, the dynamics of the follower arm are expressed as force dynamic equations such that a novel direct forces between two arms and two different type of bounded input disturbances, boundedness and asymptotic stability results based on a proposed Lyapunov function are shown. Also, a sufficient condition for a stability robustness is derived based on the Lyapunov approach.

A Camera Calibration Method using Several Images for Three Dimensional Measurement (여러 장의 영상을 사용하는 3차원 계측용 카메라 교정방법)

  • Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.224-229
    • /
    • 2007
  • This paper presents a camera calibration method using several images for three dimensional measurement applications such as stereo systems, mobile robots, and visual inspection systems in factories. Conventional calibration methods that use single image suffer from errors related to reference point extraction in image, lens distortion, and numerical analysis of nonlinear optimization. The camera parameter values obtained from images of same camera is not same even though we use same calibration method. The camera parameters that are obtained from several images of different view for a calibration target is usaully not same with large error values and we can not assume a special probabilistic distribution when we estimate the parameter values. In this paper, the median value of camera parameters from several images is used to improve estimation of the camera values in an iterative step with nonlinear optimization. The proposed method is proved by experiments using real images.

Robust Automatic Parking without Odometry using an Evolutionary Fuzzy Logic Controller

  • Ryu, Young-Woo;Oh, Se-Young;Kim, Sam-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.434-443
    • /
    • 2008
  • This paper develops a novel automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering rate for the output. It localizes the vehicle by using only external sensors - a vision sensor and ultrasonic sensors. Then it automatically learns an optimal fuzzy if-then rule set from the training data, using an evolutionary fuzzy system. Furthermore, it also finds the green zone for the ready-to-reverse position in which parking is possible just by reversing. It has been tested on a 4-wheeled Pioneer mobile robot which emulates the real vehicle.

Precision Control of Belt Drives using Feed Forward Compensator under Acceleration and Velocity Constraints (속도와 가속도 제한에서 전향 보상기를 이용한 벨트 구동의 정밀제어)

  • Kwon, Sei-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.713-720
    • /
    • 2009
  • Numerous applications of position controlling devices using servoing technique and transmission of energy through belt drives are practiced in the industry. Belt drive is a simple, lightweight, low cost power transmission system. Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. In this paper, precision positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method is demonstrated through computer simulation and experimental results.

Robot Gesture Reconition System based on PCA algorithm (PCA 알고리즘 기반의 로봇 제스처 인식 시스템)

  • Youk, Yui-Su;Kim, Seung-Young;Kim, Sung-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.400-402
    • /
    • 2008
  • The human-computer interaction technology (HCI) that has played an important role in the exchange of information between human being and computer belongs to a key field for information technology. Recently, control studies through which robots and control devices are controlled by using the movements of a person's body or hands without using conventional input devices such as keyboard and mouse, have been going only in diverse aspects, and their importance has been steadily increasing. This study is proposing a recognition method of user's gestures by applying measurements from an acceleration sensor to the PCA algorithm.

  • PDF

Formation-Keeping of Multiple Robots using Chained-Poles (연결극점을 이용한 다중로봇의 대형유지)

  • Kwak, Jae-Hyuk;Kang, Hyun-Deok;Kim, Chang-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.3
    • /
    • pp.218-224
    • /
    • 2009
  • We propose a formation-keeping and changing methods for outdoor multiple mobile robots in chained form. Our proposed method is designed to maintain the follower to its desired distance and orientation with respect to the pole using the concept of virtual force such as potential field. The client robots use a behavior-based control to perform kinematic control to keep formation under the centralized system in our software framework. The relationship of each poles that is expressed by set of distance and angle is the description of the formation type and the type converting is performed using this set. In addition, we also examine the stability and capability in the simulation and experiments with real robots.

  • PDF